#!/usr/bin/env python3 """ Test script for pre-quantized model inference """ import torch from transformers import AutoModelForCausalLM, AutoTokenizer import logging # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def test_pre_quantized_model(): """Test the pre-quantized model loading and generation""" model_id = "Tonic/petite-elle-L-aime-3-sft" device = "cuda" if torch.cuda.is_available() else "cpu" logger.info(f"Testing pre-quantized model on device: {device}") try: # Load tokenizer logger.info("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_id, subfolder="int4") if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id # Load pre-quantized model logger.info("Loading pre-quantized model...") model_kwargs = { "device_map": "auto" if device == "cuda" else "cpu", "torch_dtype": torch.float32, "trust_remote_code": True, "low_cpu_mem_usage": True, } model = AutoModelForCausalLM.from_pretrained(model_id, subfolder="int4", **model_kwargs) # Test generation test_prompt = "Bonjour, comment allez-vous?" inputs = tokenizer(test_prompt, return_tensors="pt") if device == "cuda": inputs = {k: v.cuda() for k, v in inputs.items()} logger.info("Generating response...") with torch.no_grad(): output_ids = model.generate( inputs['input_ids'], max_new_tokens=50, temperature=0.7, top_p=0.95, do_sample=True, attention_mask=inputs['attention_mask'], pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, cache_implementation="static" # Important for quantized models ) response = tokenizer.decode(output_ids[0], skip_special_tokens=True) assistant_response = response[len(test_prompt):].strip() logger.info("✅ Pre-quantized model test successful!") logger.info(f"Input: {test_prompt}") logger.info(f"Output: {assistant_response}") # Check model quantization status logger.info("Checking model quantization status...") quantized_layers = 0 total_layers = 0 for name, module in model.named_modules(): if hasattr(module, 'weight'): total_layers += 1 if module.weight.dtype != torch.float32: quantized_layers += 1 logger.info(f"Quantized layer: {name} - {module.weight.dtype}") logger.info(f"Quantized layers: {quantized_layers}/{total_layers}") # Clean up del model torch.cuda.empty_cache() if device == "cuda" else None except Exception as e: logger.error(f"❌ Pre-quantized model test failed: {e}") import traceback traceback.print_exc() if __name__ == "__main__": test_pre_quantized_model()