Spaces:
Runtime error
Runtime error
add demo
Browse files
app.py
CHANGED
|
@@ -13,10 +13,8 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 13 |
device_map="auto",
|
| 14 |
torch_dtype=torch.bfloat16
|
| 15 |
)
|
| 16 |
-
|
| 17 |
-
#
|
| 18 |
-
if tokenizer.pad_token_id is None:
|
| 19 |
-
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 20 |
|
| 21 |
description = """
|
| 22 |
Salamandra-2b-instruct is a Transformer-based decoder-only language model that has been pre-trained on 7.8 trillion tokens of highly curated data.
|
|
@@ -47,7 +45,7 @@ def generate_text(system_prompt, user_prompt, temperature, max_new_tokens, top_p
|
|
| 47 |
)
|
| 48 |
|
| 49 |
inputs = tokenizer(chat_prompt, return_tensors="pt", padding=True, truncation=True)
|
| 50 |
-
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 51 |
|
| 52 |
outputs = model.generate(
|
| 53 |
**inputs,
|
|
@@ -71,23 +69,25 @@ with gr.Blocks() as demo:
|
|
| 71 |
|
| 72 |
with gr.Row():
|
| 73 |
with gr.Column(scale=1):
|
| 74 |
-
gr.
|
|
|
|
| 75 |
with gr.Column(scale=1):
|
| 76 |
-
gr.
|
|
|
|
| 77 |
|
| 78 |
with gr.Row():
|
| 79 |
with gr.Column(scale=1):
|
| 80 |
system_prompt = gr.Textbox(
|
| 81 |
lines=3,
|
| 82 |
label="π₯οΈ System Prompt",
|
| 83 |
-
value="You are a
|
| 84 |
)
|
| 85 |
user_prompt = gr.Textbox(lines=5, label="πββοΈ User Prompt")
|
| 86 |
generate_button = gr.Button("Generate with π¦ Salamandra-2b-instruct")
|
| 87 |
|
| 88 |
with gr.Accordion("π§ͺ Parameters", open=False):
|
| 89 |
temperature = gr.Slider(0.0, 1.0, value=0.7, label="π‘οΈ Temperature")
|
| 90 |
-
max_new_tokens = gr.Slider(1,
|
| 91 |
top_p = gr.Slider(0.0, 1.0, value=0.95, label="βοΈ Top P")
|
| 92 |
repetition_penalty = gr.Slider(1.0, 2.0, value=1.2, label="π Repetition Penalty")
|
| 93 |
|
|
|
|
| 13 |
device_map="auto",
|
| 14 |
torch_dtype=torch.bfloat16
|
| 15 |
)
|
| 16 |
+
# if tokenizer.pad_token_id is None:
|
| 17 |
+
# tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
|
|
|
|
|
| 18 |
|
| 19 |
description = """
|
| 20 |
Salamandra-2b-instruct is a Transformer-based decoder-only language model that has been pre-trained on 7.8 trillion tokens of highly curated data.
|
|
|
|
| 45 |
)
|
| 46 |
|
| 47 |
inputs = tokenizer(chat_prompt, return_tensors="pt", padding=True, truncation=True)
|
| 48 |
+
# inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 49 |
|
| 50 |
outputs = model.generate(
|
| 51 |
**inputs,
|
|
|
|
| 69 |
|
| 70 |
with gr.Row():
|
| 71 |
with gr.Column(scale=1):
|
| 72 |
+
with gr.Group():
|
| 73 |
+
gr.Markdown(description)
|
| 74 |
with gr.Column(scale=1):
|
| 75 |
+
with gr.Group():
|
| 76 |
+
gr.Markdown(join_us)
|
| 77 |
|
| 78 |
with gr.Row():
|
| 79 |
with gr.Column(scale=1):
|
| 80 |
system_prompt = gr.Textbox(
|
| 81 |
lines=3,
|
| 82 |
label="π₯οΈ System Prompt",
|
| 83 |
+
value="You are Tonic-ai a senior expert assistant known for their abilities to explain and answer questions."
|
| 84 |
)
|
| 85 |
user_prompt = gr.Textbox(lines=5, label="πββοΈ User Prompt")
|
| 86 |
generate_button = gr.Button("Generate with π¦ Salamandra-2b-instruct")
|
| 87 |
|
| 88 |
with gr.Accordion("π§ͺ Parameters", open=False):
|
| 89 |
temperature = gr.Slider(0.0, 1.0, value=0.7, label="π‘οΈ Temperature")
|
| 90 |
+
max_new_tokens = gr.Slider(1, 2046, value=450, step=1, label="π’ Max New Tokens")
|
| 91 |
top_p = gr.Slider(0.0, 1.0, value=0.95, label="βοΈ Top P")
|
| 92 |
repetition_penalty = gr.Slider(1.0, 2.0, value=1.2, label="π Repetition Penalty")
|
| 93 |
|