Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import optimum
|
| 2 |
import transformers
|
| 3 |
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
|
| 4 |
-
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
| 7 |
import json
|
|
@@ -24,8 +24,6 @@ examples = [
|
|
| 24 |
]
|
| 25 |
|
| 26 |
model_name = "berkeley-nest/Starling-LM-7B-alpha"
|
| 27 |
-
# base_model = "meta-llama/Llama-2-7b-chat-hf"
|
| 28 |
-
|
| 29 |
|
| 30 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
temperature=0.4
|
|
@@ -40,14 +38,14 @@ model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
|
|
| 40 |
torch_dtype=torch.bfloat16,
|
| 41 |
load_in_4bit=True
|
| 42 |
)
|
| 43 |
-
# model = BetterTransformer.transform(model)
|
| 44 |
model.eval()
|
| 45 |
|
| 46 |
class StarlingBot:
|
| 47 |
-
|
| 48 |
-
|
| 49 |
|
| 50 |
-
|
|
|
|
| 51 |
conversation = f" <s> [INST] {self.system_prompt} [INST] {assistant_message if assistant_message else ''} </s> [/INST] {user_message} </s> "
|
| 52 |
input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False)
|
| 53 |
input_ids = input_ids.to(device)
|
|
@@ -56,7 +54,7 @@ class StarlingBot:
|
|
| 56 |
use_cache=False,
|
| 57 |
early_stopping=False,
|
| 58 |
bos_token_id=model.config.bos_token_id,
|
| 59 |
-
|
| 60 |
pad_token_id=model.config.eos_token_id,
|
| 61 |
temperature=temperature,
|
| 62 |
do_sample=True,
|
|
@@ -65,13 +63,12 @@ class StarlingBot:
|
|
| 65 |
repetition_penalty=repetition_penalty
|
| 66 |
)
|
| 67 |
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
| 68 |
-
response_text = response.strip()
|
| 69 |
# response_text = response.split("<|assistant|>\n")[-1]
|
| 70 |
return response_text
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
|
| 76 |
starling_bot = StarlingBot()
|
| 77 |
|
|
@@ -79,7 +76,7 @@ iface = gr.Interface(
|
|
| 79 |
fn=starling_bot.predict,
|
| 80 |
title=title,
|
| 81 |
description=description,
|
| 82 |
-
|
| 83 |
inputs=[
|
| 84 |
gr.Textbox(label="🌟🤩User Message", type="text", lines=5),
|
| 85 |
gr.Textbox(label="💫🌠Starling Assistant Message or Instructions ", lines=2),
|
|
|
|
| 1 |
import optimum
|
| 2 |
import transformers
|
| 3 |
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
|
| 4 |
+
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
| 7 |
import json
|
|
|
|
| 24 |
]
|
| 25 |
|
| 26 |
model_name = "berkeley-nest/Starling-LM-7B-alpha"
|
|
|
|
|
|
|
| 27 |
|
| 28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
temperature=0.4
|
|
|
|
| 38 |
torch_dtype=torch.bfloat16,
|
| 39 |
load_in_4bit=True
|
| 40 |
)
|
|
|
|
| 41 |
model.eval()
|
| 42 |
|
| 43 |
class StarlingBot:
|
| 44 |
+
def __init__(self, system_prompt="The following dialogue is a conversation"):
|
| 45 |
+
self.system_prompt = system_prompt
|
| 46 |
|
| 47 |
+
def predict(self, user_message, assistant_message, system_prompt, do_sample, temperature=0.4, max_new_tokens=700, top_p=0.99, repetition_penalty=1.9):
|
| 48 |
+
try:
|
| 49 |
conversation = f" <s> [INST] {self.system_prompt} [INST] {assistant_message if assistant_message else ''} </s> [/INST] {user_message} </s> "
|
| 50 |
input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False)
|
| 51 |
input_ids = input_ids.to(device)
|
|
|
|
| 54 |
use_cache=False,
|
| 55 |
early_stopping=False,
|
| 56 |
bos_token_id=model.config.bos_token_id,
|
| 57 |
+
eos_token_id=model.config.eos_token_id,
|
| 58 |
pad_token_id=model.config.eos_token_id,
|
| 59 |
temperature=temperature,
|
| 60 |
do_sample=True,
|
|
|
|
| 63 |
repetition_penalty=repetition_penalty
|
| 64 |
)
|
| 65 |
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
|
|
|
| 66 |
# response_text = response.split("<|assistant|>\n")[-1]
|
| 67 |
return response_text
|
| 68 |
+
finally:
|
| 69 |
+
del input_ids, attention_mask, output_ids
|
| 70 |
+
gc.collect()
|
| 71 |
+
torch.cuda.empty_cache()
|
| 72 |
|
| 73 |
starling_bot = StarlingBot()
|
| 74 |
|
|
|
|
| 76 |
fn=starling_bot.predict,
|
| 77 |
title=title,
|
| 78 |
description=description,
|
| 79 |
+
examples=examples,
|
| 80 |
inputs=[
|
| 81 |
gr.Textbox(label="🌟🤩User Message", type="text", lines=5),
|
| 82 |
gr.Textbox(label="💫🌠Starling Assistant Message or Instructions ", lines=2),
|