Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,4 @@
|
|
| 1 |
-
|
| 2 |
-
import transformers
|
| 3 |
-
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
|
| 4 |
-
|
| 5 |
-
import torch
|
| 6 |
-
import gradio as gr
|
| 7 |
-
import json
|
| 8 |
-
import os
|
| 9 |
-
import shutil
|
| 10 |
-
import requests
|
| 11 |
-
|
| 12 |
|
| 13 |
title = "👋🏻Welcome to Tonic's 💫🌠Starling 7B"
|
| 14 |
description = "You can use [💫🌠Starling 7B](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) or duplicate it for local use or on Hugging Face! [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
|
|
@@ -23,7 +13,15 @@ examples = [
|
|
| 23 |
]
|
| 24 |
]
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
temperature=0.4
|
|
@@ -31,7 +29,6 @@ max_new_tokens=240
|
|
| 31 |
top_p=0.92
|
| 32 |
repetition_penalty=1.7
|
| 33 |
|
| 34 |
-
|
| 35 |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
| 36 |
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
|
| 37 |
device_map="auto",
|
|
|
|
| 1 |
+
model_name = "berkeley-nest/Starling-LM-7B-alpha"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
title = "👋🏻Welcome to Tonic's 💫🌠Starling 7B"
|
| 4 |
description = "You can use [💫🌠Starling 7B](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) or duplicate it for local use or on Hugging Face! [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
|
|
|
|
| 13 |
]
|
| 14 |
]
|
| 15 |
|
| 16 |
+
|
| 17 |
+
import transformers
|
| 18 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
|
| 19 |
+
import torch
|
| 20 |
+
import gradio as gr
|
| 21 |
+
import json
|
| 22 |
+
import os
|
| 23 |
+
import shutil
|
| 24 |
+
import requests
|
| 25 |
|
| 26 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
temperature=0.4
|
|
|
|
| 29 |
top_p=0.92
|
| 30 |
repetition_penalty=1.7
|
| 31 |
|
|
|
|
| 32 |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
| 33 |
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
|
| 34 |
device_map="auto",
|