Update app.py
Browse files
app.py
CHANGED
|
@@ -1,99 +1,92 @@
|
|
|
|
|
| 1 |
import transformers
|
| 2 |
-
from transformers import AutoTokenizer,
|
| 3 |
-
from
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
import
|
| 10 |
-
import gradio as gr
|
| 11 |
-
|
| 12 |
-
# Functions to Wrap the Prompt Correctly
|
| 13 |
-
def wrap_text(text, width=90):
|
| 14 |
-
lines = text.split('\n')
|
| 15 |
-
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
| 16 |
-
wrapped_text = '\n'.join(wrapped_lines)
|
| 17 |
-
return wrapped_text
|
| 18 |
-
|
| 19 |
-
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
|
| 20 |
-
# Combine user input and system prompt
|
| 21 |
-
formatted_input = f"{system_prompt} {user_input}"
|
| 22 |
|
| 23 |
-
# Encode the input text
|
| 24 |
-
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
|
| 25 |
-
model_inputs = encodeds.to(device)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
| 41 |
|
| 42 |
-
return response_text
|
| 43 |
|
| 44 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
| 48 |
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
|
| 49 |
device_map="auto",
|
| 50 |
torch_dtype=torch.bfloat16,
|
| 51 |
-
load_in_4bit=True
|
| 52 |
)
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
# Decode and return the response
|
| 78 |
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
| 79 |
return response_text
|
| 80 |
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
title = "👋🏻Welcome to Tonic's Claire Chat🚀"
|
| 84 |
-
description = "You can use this Space to test out the current model ([ClaireLLM](https://huggingface.co/OpenLLM-France/Claire-Mistral-7B-0.1)) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on [Discord to build together](https://discord.gg/nXx5wbX9)."
|
| 85 |
-
examples = [["[Estragon :] On va voir. Tiens. Ils prennent chacun un bout de la corde et tirent. La corde se casse. Ils manquent de tomber.", "[Vladimir] Fais voir quand même. (Estragon dénoue la corde qui maintient son pantalon.Celui-ci, beaucoup trop large, lui tombe autour des chevilles. Ils regardent la corde.) À la rigueur ça pourrait aller. Mais est-elle solide ?"]]
|
| 86 |
iface = gr.Interface(
|
| 87 |
-
fn=
|
| 88 |
title=title,
|
| 89 |
description=description,
|
| 90 |
examples=examples,
|
| 91 |
inputs=[
|
| 92 |
-
gr.Textbox(label="
|
| 93 |
-
gr.Textbox(label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
],
|
| 95 |
-
outputs=
|
| 96 |
theme="ParityError/Anime"
|
| 97 |
)
|
| 98 |
|
| 99 |
-
iface.launch()
|
|
|
|
| 1 |
+
import optimum
|
| 2 |
import transformers
|
| 3 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
|
| 4 |
+
from optimum.bettertransformer import BetterTransformer
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
| 7 |
+
import json
|
| 8 |
+
import os
|
| 9 |
+
import shutil
|
| 10 |
+
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
title = "👋🏻Welcome to Tonic's 💫🌠Starling 7B"
|
| 14 |
+
description = "You can use [💫🌠Starling 7B](https://huggingface.co/berkeley-nest/Starling-RM-7B-alpha) or duplicate it for local use or on Hugging Face! [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
|
| 15 |
+
examples = [
|
| 16 |
+
[
|
| 17 |
+
"The following dialogue is a conversation between Emmanuel Macron and Elon Musk:", # user_message
|
| 18 |
+
"[Emmanuel Macron]: Hello Mr. Musk. Thank you for receiving me today.", # assistant_message
|
| 19 |
+
0.9, # temperature
|
| 20 |
+
450, # max_new_tokens
|
| 21 |
+
0.90, # top_p
|
| 22 |
+
1.9, # repetition_penalty
|
| 23 |
+
]
|
| 24 |
+
]
|
| 25 |
|
| 26 |
+
model_name = "berkeley-nest/Starling-RM-7B-alpha"
|
| 27 |
|
|
|
|
| 28 |
|
| 29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
+
temperature=0.4
|
| 31 |
+
max_new_tokens=240
|
| 32 |
+
top_p=0.92
|
| 33 |
+
repetition_penalty=1.7
|
| 34 |
+
|
| 35 |
|
| 36 |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
| 37 |
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
|
| 38 |
device_map="auto",
|
| 39 |
torch_dtype=torch.bfloat16,
|
| 40 |
+
load_in_4bit=True
|
| 41 |
)
|
| 42 |
+
model = BetterTransformer.transform(model)
|
| 43 |
+
|
| 44 |
+
class StarlingBot:
|
| 45 |
+
def __init__(self, system_prompt="The following dialogue is a conversation"):
|
| 46 |
+
self.system_prompt = system_prompt
|
| 47 |
+
|
| 48 |
+
def predict(self, user_message, assistant_message, system_prompt, do_sample, temperature=0.4, max_new_tokens=700, top_p=0.99, repetition_penalty=1.9):
|
| 49 |
+
conversation = f" <s> [INST] {self.system_prompt} [INST] {assistant_message if assistant_message else ''} </s> [/INST] {user_message} </s> "
|
| 50 |
+
# Encode the conversation using the tokenizer
|
| 51 |
+
input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False)
|
| 52 |
+
input_ids = input_ids.to(device)
|
| 53 |
+
response = model.generate(
|
| 54 |
+
input_ids=input_ids,
|
| 55 |
+
use_cache=False,
|
| 56 |
+
early_stopping=False,
|
| 57 |
+
bos_token_id=model.config.bos_token_id,
|
| 58 |
+
eos_token_id=model.config.eos_token_id,
|
| 59 |
+
pad_token_id=model.config.eos_token_id,
|
| 60 |
+
temperature=temperature,
|
| 61 |
+
do_sample=True,
|
| 62 |
+
max_new_tokens=max_new_tokens,
|
| 63 |
+
top_p=top_p,
|
| 64 |
+
repetition_penalty=repetition_penalty
|
| 65 |
+
)
|
|
|
|
| 66 |
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
| 67 |
return response_text
|
| 68 |
|
| 69 |
+
# Create the Falcon chatbot instance
|
| 70 |
+
StarlingBot_bot = StarlingBot()
|
| 71 |
+
|
| 72 |
+
starling_bot = StarlingBot() # Renamed for consistency
|
| 73 |
|
|
|
|
|
|
|
|
|
|
| 74 |
iface = gr.Interface(
|
| 75 |
+
fn=starling_bot.predict, # Corrected to match the instance name
|
| 76 |
title=title,
|
| 77 |
description=description,
|
| 78 |
examples=examples,
|
| 79 |
inputs=[
|
| 80 |
+
gr.Textbox(label="User Message", type="text", lines=5),
|
| 81 |
+
gr.Textbox(label="💫🌠Starling Assistant Message or Instructions ", lines=2),
|
| 82 |
+
gr.Textbox(label="💫🌠Starling System Prompt or Instruction", lines=2),
|
| 83 |
+
gr.Checkbox(label="Advanced", value=False), # Ensure this is connected to functionality
|
| 84 |
+
gr.Slider(label="Temperature", value=0.7, minimum=0.05, maximum=1.0, step=0.05),
|
| 85 |
+
gr.Slider(label="Max new tokens", value=100, minimum=25, maximum=256, step=1),
|
| 86 |
+
gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05),
|
| 87 |
+
gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0, step=0.05)
|
| 88 |
],
|
| 89 |
+
outputs="text",
|
| 90 |
theme="ParityError/Anime"
|
| 91 |
)
|
| 92 |
|
|
|