Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
5e1003d
1
Parent(s):
3f23d73
Add nltk dependency and update translate function to handle multiple sentences
Browse files- app.py +15 -17
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -4,6 +4,9 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
| 4 |
from flores import code_mapping
|
| 5 |
import platform
|
| 6 |
import torch
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
device = "cpu" if platform.system() == "Darwin" else "cuda"
|
| 9 |
MODEL_NAME = "facebook/nllb-200-3.3B"
|
|
@@ -28,34 +31,29 @@ def load_tokenizer(src_lang, tgt_lang):
|
|
| 28 |
|
| 29 |
|
| 30 |
@spaces.GPU
|
| 31 |
-
def translate(
|
| 32 |
-
text: str,
|
| 33 |
-
src_lang: str,
|
| 34 |
-
tgt_lang: str,
|
| 35 |
-
window_size: int = 800,
|
| 36 |
-
overlap_size: int = 200,
|
| 37 |
-
):
|
| 38 |
tokenizer = load_tokenizer(src_lang, tgt_lang)
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
)
|
| 43 |
-
translated_chunks = []
|
| 44 |
|
| 45 |
-
for
|
| 46 |
-
|
|
|
|
|
|
|
| 47 |
translated_chunk = model.generate(
|
| 48 |
-
input_ids=torch.tensor([
|
| 49 |
forced_bos_token_id=tokenizer.lang_code_to_id[code_mapping[tgt_lang]],
|
| 50 |
-
max_length=
|
| 51 |
num_return_sequences=1,
|
| 52 |
)
|
| 53 |
translated_chunk = tokenizer.decode(
|
| 54 |
translated_chunk[0], skip_special_tokens=True
|
| 55 |
)
|
| 56 |
-
|
| 57 |
|
| 58 |
-
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
description = """
|
|
|
|
| 4 |
from flores import code_mapping
|
| 5 |
import platform
|
| 6 |
import torch
|
| 7 |
+
import nltk
|
| 8 |
+
|
| 9 |
+
nltk.download("punkt")
|
| 10 |
|
| 11 |
device = "cpu" if platform.system() == "Darwin" else "cuda"
|
| 12 |
MODEL_NAME = "facebook/nllb-200-3.3B"
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
@spaces.GPU
|
| 34 |
+
def translate(text: str, src_lang: str, tgt_lang: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
tokenizer = load_tokenizer(src_lang, tgt_lang)
|
| 36 |
|
| 37 |
+
sentences = nltk.sent_tokenize(text)
|
| 38 |
+
translated_sentences = []
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
for sentence in sentences:
|
| 41 |
+
input_tokens = (
|
| 42 |
+
tokenizer(sentence, return_tensors="pt").input_ids[0].cpu().numpy().tolist()
|
| 43 |
+
)
|
| 44 |
translated_chunk = model.generate(
|
| 45 |
+
input_ids=torch.tensor([input_tokens]).to(device),
|
| 46 |
forced_bos_token_id=tokenizer.lang_code_to_id[code_mapping[tgt_lang]],
|
| 47 |
+
max_length=len(input_tokens) + 50,
|
| 48 |
num_return_sequences=1,
|
| 49 |
)
|
| 50 |
translated_chunk = tokenizer.decode(
|
| 51 |
translated_chunk[0], skip_special_tokens=True
|
| 52 |
)
|
| 53 |
+
translated_sentences.append(translated_chunk)
|
| 54 |
|
| 55 |
+
translated_text = " ".join(translated_sentences)
|
| 56 |
+
return translated_text
|
| 57 |
|
| 58 |
|
| 59 |
description = """
|
requirements.txt
CHANGED
|
@@ -2,4 +2,5 @@
|
|
| 2 |
transformers
|
| 3 |
torch
|
| 4 |
gradio
|
| 5 |
-
spaces
|
|
|
|
|
|
| 2 |
transformers
|
| 3 |
torch
|
| 4 |
gradio
|
| 5 |
+
spaces
|
| 6 |
+
nltk
|