import numpy as np import gradio as gr import tensorflow as tf model = tf.keras.models.load_model('model1.h5') def recognize_digit(image): if image is not None: image = image.reshape((1,28,28,1)).astype('float32') / 255 prediction = model.predict(image) return {str(i): float(prediction[0][i]) for i in range(10)} else: return '' iface = gr.Interface( fn=recognize_digit, inputs=gr.Image(shape=(28,28), image_mode='L', invert_colors=True, source='canvas'), outputs=gr.Label(num_top_classes=10), live=True ) iface.launch(share=True)