import os import gradio as gr import requests import pandas as pd from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel, PythonInterpreterTool, WikipediaSearchTool, FinalAnswerTool # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Hugging Face API Key --- HF_API_KEY = os.environ.get("HF_TOKEN") if not HF_API_KEY: raise ValueError("❌ Hugging Face API key not found. Please add it under Settings → Variables and secrets.") # --- Initialize Hugging Face Model --- model = InferenceClientModel( model_id="HuggingFaceH4/zephyr-7b-beta", # ✅ chat model token=HF_API_KEY ) # --- Basic Agent Definition --- class BasicAgent: def __init__(self, model): self.model = model self.agent = CodeAgent( tools=[ DuckDuckGoSearchTool(), PythonInterpreterTool(), WikipediaSearchTool(), FinalAnswerTool() ], model=self.model ) print("✅ BasicAgent initialized with Hugging Face model.") def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") try: answer = self.agent.run(question) if not answer: return "⚠️ Model returned no answer." return answer except Exception as e: print(f"❌ Error during agent run: {e}") return f"AGENT ERROR: {str(e)}" # --- Run & Submit Function --- def run_and_submit_all(profile: gr.OAuthProfile | None = None): if not profile: return "Please login to Hugging Face with the button.", None username = profile.username print(f"User logged in: {username}") # Initialize agent agent = BasicAgent(model=model) # Fetch questions questions_url = f"{DEFAULT_API_URL}/questions" submit_url = f"{DEFAULT_API_URL}/submit" try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "Fetched questions list is empty or invalid format.", None except Exception as e: return f"Error fetching questions: {e}", None # Run agent on all questions results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) if not answers_payload: return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # Prepare submission space_id = os.getenv("SPACE_ID", "your_space_id_here") # optional fallback agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} # Submit try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: return f"Submission Failed: {e}", pd.DataFrame(results_log) # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown(""" **Instructions:** 1. Login with your Hugging Face account. 2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit. """) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, inputs=(), outputs=[status_output, results_table] ) if __name__ == "__main__": demo.launch(debug=True, share=False)