---
title: Drug Discovery Pipeline
emoji: ๐
colorFrom: purple
colorTo: green
sdk: docker
pinned: false
license: mit
short_description: AI-Powered Drug Discovery Pipeline Demo
---
# ๐ฌ AI-Powered Drug Discovery Pipeline
[](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline)
[](https://opensource.org/licenses/MIT)
[](https://www.python.org/)
[](https://www.docker.com/)
**An interactive demonstration of how artificial intelligence and computational tools can accelerate the drug discovery process from target identification to post-market surveillance.**
[๐ **Try Live Demo**](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) โข [๐ **Documentation**](#-overview) โข [๐ ๏ธ **Installation**](#-installation--usage) โข [๐ค **Contribute**](#-contributing)
---
## ๐ฏ Overview
This comprehensive application integrates the four major phases of pharmaceutical drug development into a single, interactive web interface. Built with cutting-edge AI and computational biology tools, it demonstrates how modern technology can accelerate and optimize the traditionally lengthy drug discovery process.
### ๐ Pipeline Phases
**๐ฏ Phase 1**
**Discovery & Target ID**
Protein analysis & compound screening
|
**๐งช Phase 2**
**Lead Generation**
Virtual screening & ADMET prediction
|
**๐ฌ Phase 3**
**Preclinical Development**
Molecular analysis & toxicity testing
|
**๐ Phase 4**
**Implementation**
Regulatory docs & pharmacovigilance
|
---
## โจ Key Features
### ๐ฏ **Phase 1: Discovery & Target Identification**
- **๐งฌ Protein Structure Fetching** - Retrieve 3D structures from PDB database
- **๐ FASTA Sequence Analysis** - Fetch and analyze protein sequences from NCBI
- **๐ Interactive 3D Visualization** - Explore protein structures with py3Dmol
- **โ๏ธ Molecular Property Calculation** - Compute physicochemical properties using RDKit
- **๐ Drug-Likeness Assessment** - Evaluate compounds using Lipinski's Rule of Five
- **๐ Properties Dashboard** - Visualize molecular properties with interactive plots
### ๐งช **Phase 2: Lead Generation & Optimization**
- **๐ฏ Virtual Screening Simulation** - Rank compounds by predicted binding affinity
- **๐ ADMET Prediction** - Assess Absorption, Distribution, Metabolism, Excretion, and Toxicity
- **๐ฌ 2D/3D Molecular Visualization** - Interactive molecule viewers with dark theme
- **๐ Protein-Ligand Interaction** - Visualize binding sites and molecular interactions
- **๐ Lead Compound Analysis** - Analyze drugs like Oseltamivir, Zanamivir, Aspirin, and Ibuprofen
### ๐ฌ **Phase 3: Preclinical Development**
- **๐ Comprehensive Property Analysis** - Extended molecular descriptor calculations
- **๐ค AI-Powered Toxicity Prediction** - Machine learning model for toxicity risk assessment
- **๐งฌ Advanced Compound Profiling** - Analysis of clinical candidates including Remdesivir and Penicillin G
- **๐จ 3D Molecular Gallery** - Interactive visualization of compound libraries
### ๐ **Phase 4: Implementation & Post-Market**
- **๐ Regulatory Documentation** - AI/ML model documentation templates for FDA submission
- **โ ๏ธ Pharmacovigilance Simulation** - Real-world data analysis for adverse event detection
- **๐ก๏ธ Ethical Framework** - Guidelines for responsible AI in healthcare
- **๐ Adverse Event Analysis** - Statistical analysis and visualization of safety data
---
## ๐ ๏ธ Technical Stack
### **Core Technologies**
| Category | Technologies |
|----------|-------------|
| **๐ฅ๏ธ Framework** |  |
| **๐งช Cheminformatics** |  |
| **๐งฌ Bioinformatics** |  |
| **๐จ Visualization** |   |
| **๐ค Machine Learning** |  |
### **Data Sources**
| Source | Description |
|--------|-------------|
| **๐๏ธ PDB** | Protein Data Bank - 3D protein structures |
| **๐งฌ NCBI** | Protein sequences and biological data |
| **๐ ChEMBL** | Bioactivity database (referenced) |
---
## ๐ Installation & Usage
### ๐ **Quick Start - Hugging Face Spaces**
The easiest way to explore the pipeline:
```bash
๐ https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline
```
> **No installation required!** Simply click the link above to start exploring.
### ๐ป **Local Development**
#### **Prerequisites**
- Python 3.8 or higher
- Git
#### **Setup**
```bash
# ๐ฅ Clone the repository
git clone
cd drug-discovery-pipeline
# ๐ง Create virtual environment (recommended)
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# ๐ฆ Install dependencies
pip install -r requirements.txt
# ๐ Launch the application
streamlit run app.py
```
#### **Access the Application**
```
๐ Local URL: http://localhost:8501
```
### ๐ณ **Docker Deployment**
#### **Option 1: Quick Run**
```bash
# ๐โโ๏ธ Run directly from Docker Hub (if available)
docker run -p 8501:8501 alidenewade/drug-discovery-pipeline
```
#### **Option 2: Build from Source**
```bash
# ๐จ Build the Docker image
docker build -t drug-discovery-pipeline .
# ๐ Run the container
docker run -p 8501:8501 drug-discovery-pipeline
```
#### **Docker Compose (Advanced)**
```yaml
# docker-compose.yml
version: '3.8'
services:
drug-discovery:
build: .
ports:
- "8501:8501"
environment:
- STREAMLIT_SERVER_PORT=8501
volumes:
- ./data:/app/data # Optional: for persistent data
```
```bash
# ๐ณ Deploy with Docker Compose
docker-compose up -d
```
---
## ๐ Dependencies
๐ฆ Click to view complete requirements.txt
```txt
# ๐ฅ๏ธ Web Framework
streamlit>=1.28.0
# ๐ Data Processing
pandas>=1.5.0
numpy>=1.24.0
# ๐ Visualization
matplotlib>=3.6.0
seaborn>=0.12.0
plotly>=5.15.0
# ๐ Network & APIs
requests>=2.28.0
# ๐ผ๏ธ Image Processing
pillow>=9.5.0
# ๐งช Cheminformatics
rdkit>=2023.3.1
# ๐งฌ Bioinformatics
biopython>=1.81
# ๐ค Machine Learning
scikit-learn>=1.3.0
# ๐จ 3D Molecular Visualization
py3dmol>=2.0.0
# ๐ง Utilities
streamlit-option-menu>=0.3.6
streamlit-aggrid>=0.3.4
```
---
## ๐ฏ Use Cases & Applications
| ๐ **Educational** | ๐ฌ **Research** | ๐ญ **Industry** |
|-------------------|-----------------|------------------|
| Drug discovery training | Proof of concept demos | Pipeline optimization |
| Cheminformatics education | Method validation | AI strategy planning |
| Bioinformatics learning | Collaborative research | Regulatory compliance |
| AI in healthcare | Publication support | Risk assessment |
### ๐ **Educational Applications**
- **๐ University Courses** - Pharmaceutical sciences, computational biology
- **๐ฉโ๐ซ Training Programs** - Professional development in drug discovery
- **๐ Self-Learning** - Interactive exploration of drug development concepts
- **๐ฏ Workshops** - Hands-on demonstrations for conferences and seminars
### ๐ฌ **Research Applications**
- **๐ก Hypothesis Generation** - Explore structure-activity relationships
- **๐งช Method Development** - Test computational approaches
- **๐ Data Visualization** - Create publication-ready figures
- **๐ค Collaboration** - Share analyses with research teams
---
## ๐ฌ Scientific Methodology
### **๐งฌ Molecular Analysis Framework**
| Method | Description | Implementation |
|--------|-------------|----------------|
| **๐ Lipinski's Rule of Five** | Drug-likeness assessment | RDKit molecular descriptors |
| **๐ ADMET Profiling** | Pharmacokinetic predictions | Machine learning models |
| **โ ๏ธ Toxicity Modeling** | Safety risk assessment | Ensemble ML algorithms |
| **๐ SAR Analysis** | Structure-activity relationships | Statistical correlation analysis |
### **๐ Data Integration Pipeline**
```mermaid
graph LR
A[๐งฌ Structural Data] --> D[๐ Integration Engine]
B[๐ Chemical Data] --> D
C[๐ Biological Data] --> D
D --> E[๐ค AI Analysis]
E --> F[๐ Results Dashboard]
```
---
## โ ๏ธ Important Disclaimers
> **๐จ FOR EDUCATIONAL AND RESEARCH PURPOSES ONLY**
| โ ๏ธ **Limitation** | ๐ **Details** |
|-------------------|----------------|
| **๐ Educational Tool** | Demonstration purposes only, not for actual drug development |
| **๐ฒ Simulated Data** | Some analyses use simulated data for illustration |
| **๐ Regulatory Compliance** | Consult regulatory agencies for actual submissions |
| **๐จโโ๏ธ Professional Use** | Real development requires validated, regulated systems |
| **๐ฌ Research Grade** | Requires validation for production use |
---
## ๐ค Contributing
We welcome contributions from the community! Here's how you can help:
### **๐ ๏ธ Development Guidelines**
```bash
# ๐ด Fork the repository
git fork https://github.com/username/drug-discovery-pipeline
# ๐ฟ Create a feature branch
git checkout -b feature/amazing-feature
# ๐ป Make your changes
# ... code changes ...
# โ
Test your changes
python -m pytest tests/
# ๐ Commit your changes
git commit -m "Add amazing feature"
# ๐ Push to your branch
git push origin feature/amazing-feature
# ๐ Create a Pull Request
```
### **๐ Contribution Areas**
- **๐ Bug Fixes** - Fix issues and improve stability
- **โจ New Features** - Add new analysis methods or visualizations
- **๐ Documentation** - Improve README, add tutorials
- **๐งช Testing** - Expand test coverage
- **๐จ UI/UX** - Enhance user interface and experience
- **โก Performance** - Optimize for speed and memory usage
### **๐ Code Standards**
- **๐ Python Style** - Follow PEP 8 guidelines
- **๐ Documentation** - Add docstrings and comments
- **๐งช Testing** - Include unit tests for new features
- **๐ง Type Hints** - Use type annotations where applicable
---
## ๐ Support & Community
### **๐ฌ Get Help**
[](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline/discussions)
| ๐ **Issue Type** | ๐ **Where to Go** |
|------------------|-------------------|
| **๐ Bug Reports** | GitHub Issues (if available) |
| **๐ก Feature Requests** | Hugging Face Discussions |
| **โ Usage Questions** | Community Tab on HF Space |
| **๐ Documentation** | README and inline help |
---
## ๐ License & Citation
### **๐ License**
This project is licensed under the **MIT License** - see the LICENSE file for details.
### **๐ Citation**
If you use this tool in your research or education, please cite:
```bibtex
@software{drug_discovery_pipeline_2024,
title={AI-Powered Drug Discovery Pipeline},
author={alidenewade},
year={2024},
url={https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline},
note={Interactive demonstration of AI in pharmaceutical development}
}
```
---
## ๐ Acknowledgments
**Built with โค๏ธ by the open-source community**
| ๐๏ธ **Organization** | ๐ฏ **Contribution** |
|---------------------|---------------------|
| **๐งช RDKit Community** | Excellent cheminformatics tools and algorithms |
| **๐๏ธ PDB & NCBI** | Open access to biological and structural data |
| **๐ฅ๏ธ Streamlit Team** | Intuitive web application framework |
| **๐งฌ BioPython** | Comprehensive biological computation tools |
| **๐ค Scikit-learn** | Machine learning algorithms and utilities |
| **๐จ py3Dmol** | Beautiful 3D molecular visualization |
| **๐ฌ Scientific Community** | Advancing computational drug discovery |
---
## ๐ Quick Links
| ๐ **Action** | ๐ **Link** |
|---------------|-------------|
| **๐ Live Demo** | [Try Now](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) |
| **๐ค Author Profile** | [alidenewade](https://huggingface.co/alidenewade) |
| **๐ฌ ORCID** | [0009-0007-0069-4646](https://orcid.org/0009-0007-0069-4646) |
| **๐ ResearchGate** | [Ali Denewade](https://www.researchgate.net/profile/Ali-Denewade) |
| **๐ฌ Discussions** | [Community](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline/discussions) |
| **๐ Analytics** | [Space Stats](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) |
---
โญ **Star this project if you find it useful!** โญ