--- title: Drug Discovery Pipeline emoji: ๐Ÿ  colorFrom: purple colorTo: green sdk: docker pinned: false license: mit short_description: AI-Powered Drug Discovery Pipeline Demo --- # ๐Ÿ”ฌ AI-Powered Drug Discovery Pipeline
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue?style=for-the-badge)](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg?style=for-the-badge)](https://opensource.org/licenses/MIT) [![Python](https://img.shields.io/badge/python-3.8+-blue.svg?style=for-the-badge&logo=python&logoColor=white)](https://www.python.org/) [![Docker](https://img.shields.io/badge/docker-%230db7ed.svg?style=for-the-badge&logo=docker&logoColor=white)](https://www.docker.com/) **An interactive demonstration of how artificial intelligence and computational tools can accelerate the drug discovery process from target identification to post-market surveillance.** [๐Ÿš€ **Try Live Demo**](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) โ€ข [๐Ÿ“– **Documentation**](#-overview) โ€ข [๐Ÿ› ๏ธ **Installation**](#-installation--usage) โ€ข [๐Ÿค **Contribute**](#-contributing)
--- ## ๐ŸŽฏ Overview This comprehensive application integrates the four major phases of pharmaceutical drug development into a single, interactive web interface. Built with cutting-edge AI and computational biology tools, it demonstrates how modern technology can accelerate and optimize the traditionally lengthy drug discovery process. ### ๐Ÿ”„ Pipeline Phases
**๐ŸŽฏ Phase 1**
**Discovery & Target ID**
Protein analysis & compound screening
**๐Ÿงช Phase 2**
**Lead Generation**
Virtual screening & ADMET prediction
**๐Ÿ”ฌ Phase 3**
**Preclinical Development**
Molecular analysis & toxicity testing
**๐Ÿ“‹ Phase 4**
**Implementation**
Regulatory docs & pharmacovigilance
--- ## โœจ Key Features ### ๐ŸŽฏ **Phase 1: Discovery & Target Identification** - **๐Ÿงฌ Protein Structure Fetching** - Retrieve 3D structures from PDB database - **๐Ÿ” FASTA Sequence Analysis** - Fetch and analyze protein sequences from NCBI - **๐Ÿ“Š Interactive 3D Visualization** - Explore protein structures with py3Dmol - **โš—๏ธ Molecular Property Calculation** - Compute physicochemical properties using RDKit - **๐Ÿ“ˆ Drug-Likeness Assessment** - Evaluate compounds using Lipinski's Rule of Five - **๐Ÿ“Š Properties Dashboard** - Visualize molecular properties with interactive plots ### ๐Ÿงช **Phase 2: Lead Generation & Optimization** - **๐ŸŽฏ Virtual Screening Simulation** - Rank compounds by predicted binding affinity - **๐Ÿ’Š ADMET Prediction** - Assess Absorption, Distribution, Metabolism, Excretion, and Toxicity - **๐Ÿ”ฌ 2D/3D Molecular Visualization** - Interactive molecule viewers with dark theme - **๐Ÿ”— Protein-Ligand Interaction** - Visualize binding sites and molecular interactions - **๐Ÿ“‹ Lead Compound Analysis** - Analyze drugs like Oseltamivir, Zanamivir, Aspirin, and Ibuprofen ### ๐Ÿ”ฌ **Phase 3: Preclinical Development** - **๐Ÿ“Š Comprehensive Property Analysis** - Extended molecular descriptor calculations - **๐Ÿค– AI-Powered Toxicity Prediction** - Machine learning model for toxicity risk assessment - **๐Ÿงฌ Advanced Compound Profiling** - Analysis of clinical candidates including Remdesivir and Penicillin G - **๐ŸŽจ 3D Molecular Gallery** - Interactive visualization of compound libraries ### ๐Ÿ“‹ **Phase 4: Implementation & Post-Market** - **๐Ÿ“„ Regulatory Documentation** - AI/ML model documentation templates for FDA submission - **โš ๏ธ Pharmacovigilance Simulation** - Real-world data analysis for adverse event detection - **๐Ÿ›ก๏ธ Ethical Framework** - Guidelines for responsible AI in healthcare - **๐Ÿ“ˆ Adverse Event Analysis** - Statistical analysis and visualization of safety data --- ## ๐Ÿ› ๏ธ Technical Stack
### **Core Technologies** | Category | Technologies | |----------|-------------| | **๐Ÿ–ฅ๏ธ Framework** | ![Streamlit](https://img.shields.io/badge/Streamlit-FF4B4B?style=flat-square&logo=streamlit&logoColor=white) | | **๐Ÿงช Cheminformatics** | ![RDKit](https://img.shields.io/badge/RDKit-2E8B57?style=flat-square) | | **๐Ÿงฌ Bioinformatics** | ![BioPython](https://img.shields.io/badge/BioPython-4169E1?style=flat-square) | | **๐ŸŽจ Visualization** | ![py3Dmol](https://img.shields.io/badge/py3Dmol-FF6347?style=flat-square) ![Matplotlib](https://img.shields.io/badge/Matplotlib-11557c?style=flat-square) | | **๐Ÿค– Machine Learning** | ![Scikit-learn](https://img.shields.io/badge/scikit--learn-F7931E?style=flat-square&logo=scikit-learn&logoColor=white) | ### **Data Sources** | Source | Description | |--------|-------------| | **๐Ÿ›๏ธ PDB** | Protein Data Bank - 3D protein structures | | **๐Ÿงฌ NCBI** | Protein sequences and biological data | | **๐Ÿ’Š ChEMBL** | Bioactivity database (referenced) |
--- ## ๐Ÿš€ Installation & Usage ### ๐ŸŒ **Quick Start - Hugging Face Spaces** The easiest way to explore the pipeline: ```bash ๐Ÿ”— https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline ``` > **No installation required!** Simply click the link above to start exploring. ### ๐Ÿ’ป **Local Development** #### **Prerequisites** - Python 3.8 or higher - Git #### **Setup** ```bash # ๐Ÿ“ฅ Clone the repository git clone cd drug-discovery-pipeline # ๐Ÿ”ง Create virtual environment (recommended) python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # ๐Ÿ“ฆ Install dependencies pip install -r requirements.txt # ๐Ÿš€ Launch the application streamlit run app.py ``` #### **Access the Application** ``` ๐ŸŒ Local URL: http://localhost:8501 ``` ### ๐Ÿณ **Docker Deployment** #### **Option 1: Quick Run** ```bash # ๐Ÿƒโ€โ™‚๏ธ Run directly from Docker Hub (if available) docker run -p 8501:8501 alidenewade/drug-discovery-pipeline ``` #### **Option 2: Build from Source** ```bash # ๐Ÿ”จ Build the Docker image docker build -t drug-discovery-pipeline . # ๐Ÿš€ Run the container docker run -p 8501:8501 drug-discovery-pipeline ``` #### **Docker Compose (Advanced)** ```yaml # docker-compose.yml version: '3.8' services: drug-discovery: build: . ports: - "8501:8501" environment: - STREAMLIT_SERVER_PORT=8501 volumes: - ./data:/app/data # Optional: for persistent data ``` ```bash # ๐Ÿณ Deploy with Docker Compose docker-compose up -d ``` --- ## ๐Ÿ“‹ Dependencies
๐Ÿ“ฆ Click to view complete requirements.txt ```txt # ๐Ÿ–ฅ๏ธ Web Framework streamlit>=1.28.0 # ๐Ÿ“Š Data Processing pandas>=1.5.0 numpy>=1.24.0 # ๐Ÿ“ˆ Visualization matplotlib>=3.6.0 seaborn>=0.12.0 plotly>=5.15.0 # ๐ŸŒ Network & APIs requests>=2.28.0 # ๐Ÿ–ผ๏ธ Image Processing pillow>=9.5.0 # ๐Ÿงช Cheminformatics rdkit>=2023.3.1 # ๐Ÿงฌ Bioinformatics biopython>=1.81 # ๐Ÿค– Machine Learning scikit-learn>=1.3.0 # ๐ŸŽจ 3D Molecular Visualization py3dmol>=2.0.0 # ๐Ÿ”ง Utilities streamlit-option-menu>=0.3.6 streamlit-aggrid>=0.3.4 ```
--- ## ๐ŸŽฏ Use Cases & Applications
| ๐ŸŽ“ **Educational** | ๐Ÿ”ฌ **Research** | ๐Ÿญ **Industry** | |-------------------|-----------------|------------------| | Drug discovery training | Proof of concept demos | Pipeline optimization | | Cheminformatics education | Method validation | AI strategy planning | | Bioinformatics learning | Collaborative research | Regulatory compliance | | AI in healthcare | Publication support | Risk assessment |
### ๐Ÿ“š **Educational Applications** - **๐ŸŽ“ University Courses** - Pharmaceutical sciences, computational biology - **๐Ÿ‘ฉโ€๐Ÿซ Training Programs** - Professional development in drug discovery - **๐Ÿ“– Self-Learning** - Interactive exploration of drug development concepts - **๐ŸŽฏ Workshops** - Hands-on demonstrations for conferences and seminars ### ๐Ÿ”ฌ **Research Applications** - **๐Ÿ’ก Hypothesis Generation** - Explore structure-activity relationships - **๐Ÿงช Method Development** - Test computational approaches - **๐Ÿ“Š Data Visualization** - Create publication-ready figures - **๐Ÿค Collaboration** - Share analyses with research teams --- ## ๐Ÿ”ฌ Scientific Methodology ### **๐Ÿงฌ Molecular Analysis Framework** | Method | Description | Implementation | |--------|-------------|----------------| | **๐Ÿ“ Lipinski's Rule of Five** | Drug-likeness assessment | RDKit molecular descriptors | | **๐Ÿ’Š ADMET Profiling** | Pharmacokinetic predictions | Machine learning models | | **โš ๏ธ Toxicity Modeling** | Safety risk assessment | Ensemble ML algorithms | | **๐Ÿ”— SAR Analysis** | Structure-activity relationships | Statistical correlation analysis | ### **๐Ÿ“Š Data Integration Pipeline** ```mermaid graph LR A[๐Ÿงฌ Structural Data] --> D[๐Ÿ”„ Integration Engine] B[๐Ÿ“Š Chemical Data] --> D C[๐Ÿ“ˆ Biological Data] --> D D --> E[๐Ÿค– AI Analysis] E --> F[๐Ÿ“‹ Results Dashboard] ``` --- ## โš ๏ธ Important Disclaimers
> **๐Ÿšจ FOR EDUCATIONAL AND RESEARCH PURPOSES ONLY**
| โš ๏ธ **Limitation** | ๐Ÿ“ **Details** | |-------------------|----------------| | **๐ŸŽ“ Educational Tool** | Demonstration purposes only, not for actual drug development | | **๐ŸŽฒ Simulated Data** | Some analyses use simulated data for illustration | | **๐Ÿ“‹ Regulatory Compliance** | Consult regulatory agencies for actual submissions | | **๐Ÿ‘จโ€โš•๏ธ Professional Use** | Real development requires validated, regulated systems | | **๐Ÿ”ฌ Research Grade** | Requires validation for production use | --- ## ๐Ÿค Contributing We welcome contributions from the community! Here's how you can help: ### **๐Ÿ› ๏ธ Development Guidelines** ```bash # ๐Ÿด Fork the repository git fork https://github.com/username/drug-discovery-pipeline # ๐ŸŒฟ Create a feature branch git checkout -b feature/amazing-feature # ๐Ÿ’ป Make your changes # ... code changes ... # โœ… Test your changes python -m pytest tests/ # ๐Ÿ“ Commit your changes git commit -m "Add amazing feature" # ๐Ÿš€ Push to your branch git push origin feature/amazing-feature # ๐Ÿ”„ Create a Pull Request ``` ### **๐Ÿ“‹ Contribution Areas** - **๐Ÿ› Bug Fixes** - Fix issues and improve stability - **โœจ New Features** - Add new analysis methods or visualizations - **๐Ÿ“š Documentation** - Improve README, add tutorials - **๐Ÿงช Testing** - Expand test coverage - **๐ŸŽจ UI/UX** - Enhance user interface and experience - **โšก Performance** - Optimize for speed and memory usage ### **๐Ÿ“ Code Standards** - **๐Ÿ Python Style** - Follow PEP 8 guidelines - **๐Ÿ“ Documentation** - Add docstrings and comments - **๐Ÿงช Testing** - Include unit tests for new features - **๐Ÿ”ง Type Hints** - Use type annotations where applicable --- ## ๐Ÿ“ž Support & Community
### **๐Ÿ’ฌ Get Help** [![Hugging Face Discussions](https://img.shields.io/badge/๐Ÿค—%20Discussions-Join%20Community-yellow?style=for-the-badge)](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline/discussions)
| ๐Ÿ†˜ **Issue Type** | ๐Ÿ”— **Where to Go** | |------------------|-------------------| | **๐Ÿ› Bug Reports** | GitHub Issues (if available) | | **๐Ÿ’ก Feature Requests** | Hugging Face Discussions | | **โ“ Usage Questions** | Community Tab on HF Space | | **๐Ÿ“š Documentation** | README and inline help | --- ## ๐Ÿ“„ License & Citation ### **๐Ÿ“œ License** This project is licensed under the **MIT License** - see the LICENSE file for details. ### **๐Ÿ“– Citation** If you use this tool in your research or education, please cite: ```bibtex @software{drug_discovery_pipeline_2024, title={AI-Powered Drug Discovery Pipeline}, author={alidenewade}, year={2024}, url={https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline}, note={Interactive demonstration of AI in pharmaceutical development} } ``` --- ## ๐Ÿ™ Acknowledgments
**Built with โค๏ธ by the open-source community**
| ๐Ÿ›๏ธ **Organization** | ๐ŸŽฏ **Contribution** | |---------------------|---------------------| | **๐Ÿงช RDKit Community** | Excellent cheminformatics tools and algorithms | | **๐Ÿ›๏ธ PDB & NCBI** | Open access to biological and structural data | | **๐Ÿ–ฅ๏ธ Streamlit Team** | Intuitive web application framework | | **๐Ÿงฌ BioPython** | Comprehensive biological computation tools | | **๐Ÿค– Scikit-learn** | Machine learning algorithms and utilities | | **๐ŸŽจ py3Dmol** | Beautiful 3D molecular visualization | | **๐Ÿ”ฌ Scientific Community** | Advancing computational drug discovery | --- ## ๐Ÿ”— Quick Links
| ๐Ÿš€ **Action** | ๐Ÿ”— **Link** | |---------------|-------------| | **๐ŸŒ Live Demo** | [Try Now](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) | | **๐Ÿ‘ค Author Profile** | [alidenewade](https://huggingface.co/alidenewade) | | **๐Ÿ”ฌ ORCID** | [0009-0007-0069-4646](https://orcid.org/0009-0007-0069-4646) | | **๐Ÿ“š ResearchGate** | [Ali Denewade](https://www.researchgate.net/profile/Ali-Denewade) | | **๐Ÿ’ฌ Discussions** | [Community](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline/discussions) | | **๐Ÿ“Š Analytics** | [Space Stats](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) | --- โญ **Star this project if you find it useful!** โญ