Spaces:
Sleeping
Sleeping
Commit
·
209fb19
1
Parent(s):
8b9234c
Update inference.py
Browse files- inference.py +91 -85
inference.py
CHANGED
|
@@ -41,6 +41,68 @@ def load_historical(fpath):
|
|
| 41 |
|
| 42 |
st.set_page_config(layout="wide")
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
# Define the main function to run the Streamlit app
|
| 45 |
def run_app():
|
| 46 |
# Set Streamlit options
|
|
@@ -57,92 +119,36 @@ def run_app():
|
|
| 57 |
# Load historical herring
|
| 58 |
df_historical_herring = load_historical(fpath="herring_count_all.csv")
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
##
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
| 80 |
)
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
st.video(video_bytes)
|
| 88 |
-
st.subheader("Upload your own video...")
|
| 89 |
-
|
| 90 |
-
# Initialize accepted file types for upload
|
| 91 |
-
img_types = ["jpg", "png", "jpeg"]
|
| 92 |
-
video_types = ["mp4", "avi"]
|
| 93 |
-
|
| 94 |
-
# Allow user to upload an image or video file
|
| 95 |
-
uploaded_file = st.file_uploader("Select an image or video file...", type=img_types + video_types)
|
| 96 |
-
|
| 97 |
-
# Display the uploaded file
|
| 98 |
-
if uploaded_file is not None:
|
| 99 |
-
if str(uploaded_file.type).split("/")[-1] in img_types:
|
| 100 |
-
# Display uploaded image
|
| 101 |
-
image = Image.open(uploaded_file)
|
| 102 |
-
st.image(image, caption="Uploaded image", use_column_width=True)
|
| 103 |
-
|
| 104 |
-
# TBD: Inference code to run and display for single image
|
| 105 |
-
|
| 106 |
-
elif str(uploaded_file.type).split("/")[-1] in video_types:
|
| 107 |
-
# Display uploaded video
|
| 108 |
-
st.video(uploaded_file)
|
| 109 |
-
|
| 110 |
-
# Convert streamlit video object to OpenCV format to run inferences
|
| 111 |
-
tfile = tempfile.NamedTemporaryFile(delete=False)
|
| 112 |
-
tfile.write(uploaded_file.read())
|
| 113 |
-
vf = cv.VideoCapture(tfile.name)
|
| 114 |
-
|
| 115 |
-
# Run inference on the uploaded video
|
| 116 |
-
with st.spinner("Running inference..."):
|
| 117 |
-
frames, counts, timestamps = inference.main(vf)
|
| 118 |
-
logging.info("INFO: Completed running inference on frames")
|
| 119 |
-
st.balloons()
|
| 120 |
-
|
| 121 |
-
# Convert OpenCV Numpy frames in-memory to IO Bytes for streamlit
|
| 122 |
-
streamlit_video_file = frames_to_video(frames=frames, fps=11)
|
| 123 |
-
|
| 124 |
-
# Show processed video and provide download button
|
| 125 |
-
st.video(streamlit_video_file)
|
| 126 |
-
st.download_button(
|
| 127 |
-
label="Download processed video",
|
| 128 |
-
data=streamlit_video_file,
|
| 129 |
-
mime="mp4",
|
| 130 |
-
file_name="processed_video.mp4",
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
# Create dataframe for fish counts and timestamps
|
| 134 |
-
df_counts_time = pd.DataFrame(
|
| 135 |
-
data={"fish_count": counts, "timestamps": timestamps[1:]}
|
| 136 |
-
)
|
| 137 |
-
|
| 138 |
-
# Display fish count vs. timestamp chart
|
| 139 |
-
st.altair_chart(
|
| 140 |
-
plot_count_date(dataframe=df_counts_time),
|
| 141 |
-
use_container_width=True,
|
| 142 |
-
)
|
| 143 |
-
|
| 144 |
-
else:
|
| 145 |
-
st.write("No file uploaded")
|
| 146 |
|
| 147 |
# Run the app if the script is executed directly
|
| 148 |
if __name__ == "__main__":
|
|
|
|
| 41 |
|
| 42 |
st.set_page_config(layout="wide")
|
| 43 |
|
| 44 |
+
|
| 45 |
+
def process_uploaded_file():
|
| 46 |
+
st.subheader("Upload your own video...")
|
| 47 |
+
|
| 48 |
+
# Initialize accepted file types for upload
|
| 49 |
+
img_types = ["jpg", "png", "jpeg"]
|
| 50 |
+
video_types = ["mp4", "avi"]
|
| 51 |
+
|
| 52 |
+
# Allow user to upload an image or video file
|
| 53 |
+
uploaded_file = st.file_uploader("Select an image or video file...", type=img_types + video_types)
|
| 54 |
+
|
| 55 |
+
# Display the uploaded file
|
| 56 |
+
if uploaded_file is not None:
|
| 57 |
+
if str(uploaded_file.type).split("/")[-1] in img_types:
|
| 58 |
+
# Display uploaded image
|
| 59 |
+
image = Image.open(uploaded_file)
|
| 60 |
+
st.image(image, caption="Uploaded image", use_column_width=True)
|
| 61 |
+
|
| 62 |
+
# TBD: Inference code to run and display for single image
|
| 63 |
+
|
| 64 |
+
elif str(uploaded_file.type).split("/")[-1] in video_types:
|
| 65 |
+
# Display uploaded video
|
| 66 |
+
st.video(uploaded_file)
|
| 67 |
+
|
| 68 |
+
# Convert streamlit video object to OpenCV format to run inferences
|
| 69 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
| 70 |
+
tfile.write(uploaded_file.read())
|
| 71 |
+
vf = cv.VideoCapture(tfile.name)
|
| 72 |
+
|
| 73 |
+
# Run inference on the uploaded video
|
| 74 |
+
with st.spinner("Running inference..."):
|
| 75 |
+
frames, counts, timestamps = inference.main(vf)
|
| 76 |
+
logging.info("INFO: Completed running inference on frames")
|
| 77 |
+
st.balloons()
|
| 78 |
+
|
| 79 |
+
# Convert OpenCV Numpy frames in-memory to IO Bytes for streamlit
|
| 80 |
+
streamlit_video_file = frames_to_video(frames=frames, fps=11)
|
| 81 |
+
|
| 82 |
+
# Show processed video and provide download button
|
| 83 |
+
st.video(streamlit_video_file)
|
| 84 |
+
st.download_button(
|
| 85 |
+
label="Download processed video",
|
| 86 |
+
data=streamlit_video_file,
|
| 87 |
+
mime="mp4",
|
| 88 |
+
file_name="processed_video.mp4",
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# Create dataframe for fish counts and timestamps
|
| 92 |
+
df_counts_time = pd.DataFrame(
|
| 93 |
+
data={"fish_count": counts, "timestamps": timestamps[1:]}
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
# Display fish count vs. timestamp chart
|
| 97 |
+
st.altair_chart(
|
| 98 |
+
plot_count_date(dataframe=df_counts_time),
|
| 99 |
+
use_container_width=True,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
else:
|
| 103 |
+
st.write("No file uploaded")
|
| 104 |
+
|
| 105 |
+
|
| 106 |
# Define the main function to run the Streamlit app
|
| 107 |
def run_app():
|
| 108 |
# Set Streamlit options
|
|
|
|
| 119 |
# Load historical herring
|
| 120 |
df_historical_herring = load_historical(fpath="herring_count_all.csv")
|
| 121 |
|
| 122 |
+
main_tab, upload_tab = st.tabs(["Analysis", "Upload video for analysis"])
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
with main_tab:
|
| 127 |
+
# Create two columns for layout
|
| 128 |
+
col1, col2 = st.columns(2)
|
| 129 |
+
## Col1 #########################################
|
| 130 |
+
with col1:
|
| 131 |
+
## Initial visualizations
|
| 132 |
+
# Plot historical data
|
| 133 |
+
st.altair_chart(
|
| 134 |
+
plot_historical_data(df_historical_herring),
|
| 135 |
+
use_container_width=True,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# Display map of fishery locations
|
| 139 |
+
st.subheader("Map of Fishery Locations")
|
| 140 |
+
st.map(
|
| 141 |
+
pd.DataFrame(
|
| 142 |
+
np.random.randn(5, 2) / [50, 50] + [42.41, -71.38],
|
| 143 |
+
columns=["lat", "lon"],
|
| 144 |
+
),use_container_width=True
|
| 145 |
)
|
| 146 |
+
with col2:
|
| 147 |
+
# Display example processed video
|
| 148 |
+
st.subheader("Example of processed video")
|
| 149 |
+
st.video(video_bytes)
|
| 150 |
+
with upload_tab:
|
| 151 |
+
process_uploaded_file()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
# Run the app if the script is executed directly
|
| 154 |
if __name__ == "__main__":
|