File size: 14,249 Bytes
fd7d7b0 ddcde60 fd7d7b0 b8ddc1d d45c3c9 b8ddc1d fd7d7b0 b8ddc1d d45c3c9 fd7d7b0 8477a4d a01cd54 cf7c684 a01cd54 8477a4d cf7c684 8477a4d a01cd54 cf7c684 a01cd54 cf7c684 a01cd54 8477a4d a01cd54 d45c3c9 5936ae6 5a0d4b3 5936ae6 d45c3c9 6dbcf2e 9c3db7a f94a640 9c3db7a fa072ac 9c3db7a 4692477 9c3db7a 589ac10 9c3db7a a4c5e87 9c3db7a a4c5e87 9c3db7a a4c5e87 9c3db7a 2772476 4f7271e 5a0d4b3 66d5bd2 a476d3b e08cb4c 4692477 e08cb4c a01cd54 e08cb4c 9c3db7a 4692477 9c3db7a d6466b7 589ac10 a4c5e87 589ac10 fd7d7b0 a4c5e87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
# Original code from https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat and https://huggingface.co/spaces/radames/gradio-chatbot-read-query-param
import gradio as gr
import time
import random
import json
import mysql.connector
import os
import csv
from huggingface_hub import Repository, hf_hub_download
from datetime import datetime
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
from typing import Iterator
# data_fetcher.py
import mysql.connector
import urllib.parse
import urllib.request
# Save chat history as JSON
import atexit
import os
from huggingface_hub import HfApi, HfFolder
'''# Define dataset repository URL and ID
DATASET_REPO_URL = "https://huggingface.co/datasets/botsi/trust-game-llama-2-7b-chat"
DATASET_REPO_ID = "botsi/trust-game-llama-2-7b-chat"
# Define data file information
DATA_FILENAME = "history_trust-game-llama-2-7b-chat.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
# Get Hugging Face token from environment variable
HF_TOKEN = os.environ.get("HF_TOKEN")
# Check if the data file exists
if os.path.exists(DATA_FILE):
# Initialize Hugging Face API
api = HfApi()
# Upload file to dataset repository
with open(DATA_FILE, "rb") as f:
dataset_files = HfFolder.upload(
folder_or_file=f,
path_in_repo=DATA_FILENAME,
repo_id=DATASET_REPO_ID,
token=HF_TOKEN
)
# Print uploaded file information
print("Uploaded file to dataset repository:")
for file_info in dataset_files:
print(f"File path in repo: {file_info.path}")
print(f"File ID: {file_info.id}")
else:
print("Data file does not exist.")
'''
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Llama-2 7B Chat
This is your personal space to chat.
You can ask anything from strategic questions regarding the game or just chat as you like.
"""
'''LICENSE = """
<p/>
---
As a derivate work of [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/USE_POLICY.md).
"""
'''
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
import mysql.connector
def fetch_personalized_data(session_index):
try:
# Connect to the database
with mysql.connector.connect(
host="18.153.94.89",
user="root",
password="N12RXMKtKxRj",
database="lionessdb"
) as conn:
# Create a cursor object
with conn.cursor() as cursor:
# Query to fetch relevant data from both tables based on session_index
query = """
SELECT e5390g37096_core.playerNr,
e5390g37096_core.groupNrStart,
e5390g37096_core.subjectNr,
e5390g37096_core.onPage,
e5390g37096_decisions.session_index,
e5390g37096_decisions.transfer1,
e5390g37096_decisions.tripledAmount1,
e5390g37096_decisions.keptForSelf1,
e5390g37096_decisions.returned1,
e5390g37096_decisions.newCreditRound2,
e5390g37096_decisions.transfer2,
e5390g37096_decisions.tripledAmount2,
e5390g37096_decisions.keptForSelf2,
e5390g37096_decisions.returned2,
e5390g37096_decisions.results2rounds,
e5390g37096_decisions.newCreditRound3,
e5390g37096_decisions.transfer3,
e5390g37096_decisions.tripledAmount3,
e5390g37096_decisions.keptForSelf3,
e5390g37096_decisions.returned3,
e5390g37096_decisions.results3rounds
FROM e5390g37096_core
JOIN e5390g37096_decisions ON
e5390g37096_core.playerNr = e5390g37096_decisions.playerNr
WHERE e5390g37096_decisions.session_index = %s
UNION ALL
SELECT e5390g37096_core.playerNr,
e5390g37096_core.groupNrStart,
e5390g37096_core.subjectNr,
e5390g37096_core.onPage,
e5390g37096_decisions.session_index,
e5390g37096_decisions.transfer1,
e5390g37096_decisions.tripledAmount1,
e5390g37096_decisions.keptForSelf1,
e5390g37096_decisions.returned1,
e5390g37096_decisions.newCreditRound2,
e5390g37096_decisions.transfer2,
e5390g37096_decisions.tripledAmount2,
e5390g37096_decisions.keptForSelf2,
e5390g37096_decisions.returned2,
e5390g37096_decisions.results2rounds,
e5390g37096_decisions.newCreditRound3,
e5390g37096_decisions.transfer3,
e5390g37096_decisions.tripledAmount3,
e5390g37096_decisions.keptForSelf3,
e5390g37096_decisions.returned3,
e5390g37096_decisions.results3rounds
FROM e5390g37096_core
JOIN e5390g37096_decisions
ON e5390g37096_core.playerNr = e5390g37096_decisions.playerNr
WHERE e5390g37096_core.groupNrStart IN (
SELECT DISTINCT groupNrStart
FROM e5390g37096_core
JOIN e5390g37096_decisions
ON e5390g37096_core.playerNr = e5390g37096_decisions.playerNr
WHERE e5390g37096_decisions.session_index = %s
) AND e5390g37096_decisions.session_index != %s
"""
cursor.execute(query, (session_index, session_index, session_index))
# Fetch data row by row
data = [{
'playerNr': row[0],
'groupNrStart': row[1],
'subjectNr': row[2],
'onPage': row[3],
'session_index': row[4],
'transfer1': row[5],
'tripledAmount1': row[6],
'keptForSelf1': row[7],
'returned1': row[8],
'newCreditRound2': row[9],
'transfer2': row[10],
'tripledAmount2': row[11],
'keptForSelf2': row[12],
'returned2': row[13],
'results2rounds': row[14],
'newCreditRound3': row[15],
'transfer3': row[16],
'tripledAmount3': row[17],
'keptForSelf3': row[18],
'returned3': row[19],
'results3rounds': row[20]
} for row in cursor]
print(data)
return data
except mysql.connector.Error as err:
print(f"Error: {err}")
return None
js = """
function() {
const params = new URLSearchParams(window.location.search);
const url_params = Object.fromEntries(params);
return url_params;
}
"""
def get_window_url_params():
return """
function() {
const params = new URLSearchParams(window.location.search);
const url_params = Object.fromEntries(params);
return url_params;
}
"""
## trust-game-llama-2-7b-chat
# app.py
@spaces.GPU
def generate(
request: gr.Request,
message: str,
chat_history: list[tuple[str, str]],
# system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]: # Change return type hint to Iterator[str]
params = request.query_params
print(params)
# Construct the input prompt using the functions from the system_prompt_config module
input_prompt = construct_input_prompt(chat_history, message)
# Use the global variable to store the chat history
# global global_chat_history
conversation = []
# Move the condition here after the assignment
if input_prompt:
conversation.append({"role": "system", "content": input_prompt})
# Convert input prompt to tensor
input_ids = tokenizer(input_prompt, return_tensors="pt").to(model.device)
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
# Set up the TextIteratorStreamer
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
# Set up the generation arguments
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
# Start the model generation thread
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Yield generated text chunks
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
#gr.Markdown(DESCRIPTION)
#gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface = gr.ChatInterface(
fn=generate,
theme="soft",
retry_btn=None,
clear_btn=None,
undo_btn=None,
chatbot=gr.Chatbot(avatar_images=('user.png', 'bot.png'), bubble_full_width = False),
examples=[
["Can you explain the rules very briefly again?"],
["How much should I invest in order to win?"],
["What happened in the last round?"],
["What is my probability to win if I do not share anything?"],
],
)
with gr.Blocks(js = js, css="style.css") as demo:
#url_params = gr.JSON({}, visible=False, label="URL Params")
#session_index = get_session_index(url_params)
session_index = 'eb3636167d3a63fbeee32934610e5b2f'
personalized_data = fetch_personalized_data(session_index)
## trust-game-llama-2-7b-chat
# app.py
def get_default_system_prompt():
#BOS, EOS = "<s>", "</s>"
#BINST, EINST = "[INST]", "[/INST]"
BSYS, ESYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
DEFAULT_SYSTEM_PROMPT = f""" You are an intelligent and fair game guide in a 2-player trust game.
You are assisting players in making decisions to win.
Answer in a consistent style. Each of your answers should be maximum 2 sentences long.
The players are called The Investor and The Dealer and keep their role throughout the whole game.
Both start with 10€ in round 1. The game consists of 3 rounds. In round 1, The Investor invests between 0€ and 10€.
This amount is tripled automatically, and The Dealer can then distribute the tripled amount. After that, round 1 is over.
Both go into the next round with their current asset: The Investor with 10€ minus what he invested plus what he received back from The Dealer.
The Dealer with 10€ plus what he kept from the tripled amount.
You will receive a JSON with information on who trusted whom with how much money after each round as context.
Your goal is to guide players through the game, providing clear instructions and explanations.
If any question or action seems unclear, explain it rather than providing inaccurate information.
If you're unsure about an answer, it's better not to guess.
Example JSON context after a round: {personalized_data}
Few-shot training examples
{BSYS} Give an overview of the trust game. {ESYS}
{BSYS} Explain how trust amounts are calculated. {ESYS}
{BSYS} What happens if a player doesn't trust in a round? {ESYS}
"""
print(DEFAULT_SYSTEM_PROMPT)
return DEFAULT_SYSTEM_PROMPT
## trust-game-llama-2-7b-chat
# app.py
def construct_input_prompt(chat_history, message):
input_prompt = f"<s>[INST] <<SYS>>\n{get_default_system_prompt()}\n<</SYS>>\n\n "
for user, assistant in chat_history:
input_prompt += f"{user} [/INST] {assistant} <s>[INST] "
input_prompt += f"{message} [/INST] "
return input_prompt
chat_interface.render()
#gr.Markdown(LICENSE)
if __name__ == "__main__":
#demo.queue(max_size=20).launch()
demo.queue(max_size=20)
demo.launch(share=True, debug=True)
# Register the function to be called when the program exits
# atexit.register(save_chat_history)
|