botsi's picture
Update app.py
f0b08a6 verified
raw
history blame
13.2 kB
# Original code from https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat
# Modified for trust game purposes
import gradio as gr
import time
import random
import json
import mysql.connector
import os
import csv
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
from typing import Iterator
from huggingface_hub import Repository, hf_hub_download
from datetime import datetime
# for fetch_personalized_data
import mysql.connector
import urllib.parse
import urllib.request
# for saving chat history as JSON
import atexit
import os
from huggingface_hub import HfApi, HfFolder
# for saving chat history as dataset
import huggingface_hub
from huggingface_hub import Repository
from datetime import datetime
DATASET_REPO_URL = "https://huggingface.co/datasets/botsi/trust-game-llama-2-chat-history"
DATA_FILENAME = "data.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_TOKEN")
print("is none?", HF_TOKEN is None)
print("hfh", huggingface_hub.__version__)
repo = Repository(
local_dir="data", clone_from=DATASET_REPO_URL
)
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# This is your personal space to chat.
You can ask anything: From discussing strategic game tactics to enjoying casual conversation.
"""
# License and Acceptable Use Policy by Meta
LICENSE = """
<p/>
---
This demo is governed by the [original license](https://ai.meta.com/llama/license/) and [acceptable use policy](https://ai.meta.com/llama/use-policy/).
The most recent copy of this policy can be found at ai.meta.com/llama/use-policy.
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
def fetch_personalized_data(session_index):
try:
# Connect to the database
with mysql.connector.connect(
host="18.153.94.89",
user="root",
password="N12RXMKtKxRj",
database="lionessdb"
) as conn:
# Create a cursor object
with conn.cursor() as cursor:
# Query to fetch relevant data from both tables based on session_index
query = """
SELECT e5390g37504_core.playerNr,
e5390g37504_core.groupNrStart,
e5390g37504_core.subjectNr,
e5390g37504_core.onPage,
e5390g37504_decisions.session_index,
e5390g37504_decisions.transfer1,
e5390g37504_decisions.tripledAmount1,
e5390g37504_decisions.keptForSelf1,
e5390g37504_decisions.returned1,
e5390g37504_decisions.newCreditRound2,
e5390g37504_decisions.transfer2,
e5390g37504_decisions.tripledAmount2,
e5390g37504_decisions.keptForSelf2,
e5390g37504_decisions.returned2,
e5390g37504_decisions.results2rounds,
e5390g37504_decisions.newCreditRound3,
e5390g37504_decisions.transfer3,
e5390g37504_decisions.tripledAmount3,
e5390g37504_decisions.keptForSelf3,
e5390g37504_decisions.returned3,
e5390g37504_decisions.results3rounds
FROM e5390g37504_core
JOIN e5390g37504_decisions ON
e5390g37504_core.playerNr = e5390g37504_decisions.playerNr
WHERE e5390g37504_decisions.session_index = %s
UNION ALL
SELECT e5390g37504_core.playerNr,
e5390g37504_core.groupNrStart,
e5390g37504_core.subjectNr,
e5390g37504_core.onPage,
e5390g37504_decisions.session_index,
e5390g37504_decisions.transfer1,
e5390g37504_decisions.tripledAmount1,
e5390g37504_decisions.keptForSelf1,
e5390g37504_decisions.returned1,
e5390g37504_decisions.newCreditRound2,
e5390g37504_decisions.transfer2,
e5390g37504_decisions.tripledAmount2,
e5390g37504_decisions.keptForSelf2,
e5390g37504_decisions.returned2,
e5390g37504_decisions.results2rounds,
e5390g37504_decisions.newCreditRound3,
e5390g37504_decisions.transfer3,
e5390g37504_decisions.tripledAmount3,
e5390g37504_decisions.keptForSelf3,
e5390g37504_decisions.returned3,
e5390g37504_decisions.results3rounds
FROM e5390g37504_core
JOIN e5390g37504_decisions
ON e5390g37504_core.playerNr = e5390g37504_decisions.playerNr
WHERE e5390g37504_core.groupNrStart IN (
SELECT DISTINCT groupNrStart
FROM e5390g37504_core
JOIN e5390g37504_decisions
ON e5390g37504_core.playerNr = e5390g37504_decisions.playerNr
WHERE e5390g37504_decisions.session_index = %s
) AND e5390g37504_decisions.session_index != %s
"""
cursor.execute(query,(session_index, session_index, session_index))
# Fetch data row by row
data = [{
'playerNr': row[0],
'groupNrStart': row[1],
'subjectNr': row[2],
'onPage': row[3],
'session_index': row[4],
'transfer1': row[5],
'tripledAmount1': row[6],
'keptForSelf1': row[7],
'returned1': row[8],
'newCreditRound2': row[9],
'transfer2': row[10],
'tripledAmount2': row[11],
'keptForSelf2': row[12],
'returned2': row[13],
'results2rounds': row[14],
'newCreditRound3': row[15],
'transfer3': row[16],
'tripledAmount3': row[17],
'keptForSelf3': row[18],
'returned3': row[19],
'results3rounds': row[20]
} for row in cursor]
print(data)
return data
except mysql.connector.Error as err:
print(f"Error: {err}")
return None
## trust-game-llama-2-7b-chat
# app.py
def get_default_system_prompt(personalized_data):
#BOS, EOS = "<s>", "</s>"
#BINST, EINST = "[INST]", "[/INST]"
BSYS, ESYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
DEFAULT_SYSTEM_PROMPT = f""" You are an intelligent and fair game guide in a 2-player trust game.
You are assisting players in making decisions to win.
Answer in a consistent style. Each of your answers should be maximum 2 sentences long.
The players are called The Investor and The Dealer and keep their role throughout the whole game.
Both start with 10€ in round 1. The game consists of 3 rounds. In round 1, The Investor invests between 0€ and 10€.
This amount is tripled automatically, and The Dealer can then distribute the tripled amount. After that, round 1 is over.
Both go into the next round with their current asset: The Investor with 10€ minus what he invested plus what he received back from The Dealer.
The Dealer with 10€ plus what he kept from the tripled amount.
You will receive a JSON with information on who trusted whom with how much money after each round as context.
Your goal is to guide players through the game, providing clear instructions and explanations.
If any question or action seems unclear, explain it rather than providing inaccurate information.
If you're unsure about an answer, it's better not to guess.
Example JSON context after a round: {personalized_data}
Few-shot training examples
{BSYS} Give an overview of the trust game. {ESYS}
{BSYS} Explain how trust amounts are calculated. {ESYS}
{BSYS} What happens if a player doesn't trust in a round? {ESYS}
"""
print(DEFAULT_SYSTEM_PROMPT)
return DEFAULT_SYSTEM_PROMPT
## trust-game-llama-2-7b-chat
# app.py
def construct_input_prompt(chat_history, message, personalized_data):
input_prompt = f"<s>[INST] <<SYS>>\n{get_default_system_prompt(personalized_data)}\n<</SYS>>\n\n "
for user, assistant in chat_history:
input_prompt += f"{user} [/INST] {assistant} <s>[INST] "
input_prompt += f"{message} [/INST] "
return input_prompt
## trust-game-llama-2-7b-chat
# app.py
@spaces.GPU
def generate(
request: gr.Request, # To fetch query params
message: str,
chat_history: list[tuple[str, str]],
# input_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]: # Change return type hint to Iterator[str]
conversation = []
# Fetch query params
params = request.query_params
print('those are the query params')
print(params)
# Assuming params = request.query_params is the dictionary containing the query parameters
# Extract the value of the 'session_index' parameter
session_index = params.get('session_index')
# Check if session_index_value is None or contains a value
if session_index is not None:
print("Session index:", session_index)
else:
print("Session index not found or has no value.")
# Fetch personalized data
personalized_data = fetch_personalized_data(session_index)
# Construct the input prompt using the functions from the system_prompt_config module
input_prompt = construct_input_prompt(chat_history, message, personalized_data)
# Move the condition here after the assignment
if input_prompt:
conversation.append({"role": "system", "content": input_prompt})
# Convert input prompt to tensor
input_ids = tokenizer(input_prompt, return_tensors="pt").to(model.device)
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
# Set up the TextIteratorStreamer
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
# Set up the generation arguments
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
# Start the model generation thread
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Yield generated text chunks
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
retry_btn=None,
clear_btn=None,
undo_btn=None,
chatbot=gr.Chatbot(avatar_images=('user.png', 'bot.png'), bubble_full_width = False),
examples=[
["Can you explain the rules very briefly again?"],
["How much should I invest in order to win?"],
["What happened in the last round?"],
["What is my probability to win if I do not share anything?"],
],
)
with gr.Blocks(css="style.css", theme=gr.themes.Default(primary_hue=gr.themes.colors.emerald,secondary_hue=gr.themes.colors.indigo)) as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
#demo.queue(max_size=20)
demo.launch(share=True, debug=True)