# Original code from https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat # Modified for trust game purposes import gradio as gr import time import random import json import mysql.connector import os import csv import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread from typing import Iterator from huggingface_hub import Repository, hf_hub_download from datetime import datetime # for fetch_personalized_data import mysql.connector import urllib.parse import urllib.request # for saving chat history as JSON import atexit import os from huggingface_hub import HfApi, HfFolder # for saving chat history as dataset import huggingface_hub from huggingface_hub import Repository from datetime import datetime DATASET_REPO_URL = "https://huggingface.co/datasets/botsi/trust-game-llama-2-chat-history" DATA_FILENAME = "data.csv" DATA_FILE = os.path.join("data", DATA_FILENAME) HF_TOKEN = os.environ.get("HF_TOKEN") print("is none?", HF_TOKEN is None) print("hfh", huggingface_hub.__version__) repo = Repository( local_dir="data", clone_from=DATASET_REPO_URL ) MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # This is your personal space to chat. You can ask anything: From discussing strategic game tactics to enjoying casual conversation. """ # License and Acceptable Use Policy by Meta LICENSE = """

--- This demo is governed by the [original license](https://ai.meta.com/llama/license/) and [acceptable use policy](https://ai.meta.com/llama/use-policy/). The most recent copy of this policy can be found at ai.meta.com/llama/use-policy. """ if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" if torch.cuda.is_available(): model_id = "meta-llama/Llama-2-7b-chat-hf" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False def fetch_personalized_data(session_index): try: # Connect to the database with mysql.connector.connect( host="18.153.94.89", user="root", password="N12RXMKtKxRj", database="lionessdb" ) as conn: # Create a cursor object with conn.cursor() as cursor: # Query to fetch relevant data from both tables based on session_index query = """ SELECT e5390g37504_core.playerNr, e5390g37504_core.groupNrStart, e5390g37504_core.subjectNr, e5390g37504_core.onPage, e5390g37504_decisions.session_index, e5390g37504_decisions.transfer1, e5390g37504_decisions.tripledAmount1, e5390g37504_decisions.keptForSelf1, e5390g37504_decisions.returned1, e5390g37504_decisions.newCreditRound2, e5390g37504_decisions.transfer2, e5390g37504_decisions.tripledAmount2, e5390g37504_decisions.keptForSelf2, e5390g37504_decisions.returned2, e5390g37504_decisions.results2rounds, e5390g37504_decisions.newCreditRound3, e5390g37504_decisions.transfer3, e5390g37504_decisions.tripledAmount3, e5390g37504_decisions.keptForSelf3, e5390g37504_decisions.returned3, e5390g37504_decisions.results3rounds FROM e5390g37504_core JOIN e5390g37504_decisions ON e5390g37504_core.playerNr = e5390g37504_decisions.playerNr WHERE e5390g37504_decisions.session_index = %s UNION ALL SELECT e5390g37504_core.playerNr, e5390g37504_core.groupNrStart, e5390g37504_core.subjectNr, e5390g37504_core.onPage, e5390g37504_decisions.session_index, e5390g37504_decisions.transfer1, e5390g37504_decisions.tripledAmount1, e5390g37504_decisions.keptForSelf1, e5390g37504_decisions.returned1, e5390g37504_decisions.newCreditRound2, e5390g37504_decisions.transfer2, e5390g37504_decisions.tripledAmount2, e5390g37504_decisions.keptForSelf2, e5390g37504_decisions.returned2, e5390g37504_decisions.results2rounds, e5390g37504_decisions.newCreditRound3, e5390g37504_decisions.transfer3, e5390g37504_decisions.tripledAmount3, e5390g37504_decisions.keptForSelf3, e5390g37504_decisions.returned3, e5390g37504_decisions.results3rounds FROM e5390g37504_core JOIN e5390g37504_decisions ON e5390g37504_core.playerNr = e5390g37504_decisions.playerNr WHERE e5390g37504_core.groupNrStart IN ( SELECT DISTINCT groupNrStart FROM e5390g37504_core JOIN e5390g37504_decisions ON e5390g37504_core.playerNr = e5390g37504_decisions.playerNr WHERE e5390g37504_decisions.session_index = %s ) AND e5390g37504_decisions.session_index != %s """ cursor.execute(query,(session_index, session_index, session_index)) # Fetch data row by row data = [{ 'playerNr': row[0], 'groupNrStart': row[1], 'subjectNr': row[2], 'onPage': row[3], 'session_index': row[4], 'transfer1': row[5], 'tripledAmount1': row[6], 'keptForSelf1': row[7], 'returned1': row[8], 'newCreditRound2': row[9], 'transfer2': row[10], 'tripledAmount2': row[11], 'keptForSelf2': row[12], 'returned2': row[13], 'results2rounds': row[14], 'newCreditRound3': row[15], 'transfer3': row[16], 'tripledAmount3': row[17], 'keptForSelf3': row[18], 'returned3': row[19], 'results3rounds': row[20] } for row in cursor] print(data) return data except mysql.connector.Error as err: print(f"Error: {err}") return None ## trust-game-llama-2-7b-chat # app.py def get_default_system_prompt(personalized_data): #BOS, EOS = "", "" #BINST, EINST = "[INST]", "[/INST]" BSYS, ESYS = "<>\n", "\n<>\n\n" DEFAULT_SYSTEM_PROMPT = f""" You are an intelligent and fair game guide in a 2-player trust game. You are assisting players in making decisions to win. Answer in a consistent style. Each of your answers should be maximum 2 sentences long. The players are called The Investor and The Dealer and keep their role throughout the whole game. Both start with 10€ in round 1. The game consists of 3 rounds. In round 1, The Investor invests between 0€ and 10€. This amount is tripled automatically, and The Dealer can then distribute the tripled amount. After that, round 1 is over. Both go into the next round with their current asset: The Investor with 10€ minus what he invested plus what he received back from The Dealer. The Dealer with 10€ plus what he kept from the tripled amount. You will receive a JSON with information on who trusted whom with how much money after each round as context. Your goal is to guide players through the game, providing clear instructions and explanations. If any question or action seems unclear, explain it rather than providing inaccurate information. If you're unsure about an answer, it's better not to guess. Example JSON context after a round: {personalized_data} Few-shot training examples {BSYS} Give an overview of the trust game. {ESYS} {BSYS} Explain how trust amounts are calculated. {ESYS} {BSYS} What happens if a player doesn't trust in a round? {ESYS} """ print(DEFAULT_SYSTEM_PROMPT) return DEFAULT_SYSTEM_PROMPT ## trust-game-llama-2-7b-chat # app.py def construct_input_prompt(chat_history, message, personalized_data): input_prompt = f"[INST] <>\n{get_default_system_prompt(personalized_data)}\n<>\n\n " for user, assistant in chat_history: input_prompt += f"{user} [/INST] {assistant} [INST] " input_prompt += f"{message} [/INST] " return input_prompt ## trust-game-llama-2-7b-chat # app.py @spaces.GPU def generate( request: gr.Request, # To fetch query params message: str, chat_history: list[tuple[str, str]], # input_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: # Change return type hint to Iterator[str] conversation = [] # Fetch query params params = request.query_params print('those are the query params') print(params) # Assuming params = request.query_params is the dictionary containing the query parameters # Extract the value of the 'session_index' parameter session_index = params.get('session_index') # Check if session_index_value is None or contains a value if session_index is not None: print("Session index:", session_index) else: print("Session index not found or has no value.") # Fetch personalized data personalized_data = fetch_personalized_data(session_index) # Construct the input prompt using the functions from the system_prompt_config module input_prompt = construct_input_prompt(chat_history, message, personalized_data) # Move the condition here after the assignment if input_prompt: conversation.append({"role": "system", "content": input_prompt}) # Convert input prompt to tensor input_ids = tokenizer(input_prompt, return_tensors="pt").to(model.device) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) # Set up the TextIteratorStreamer streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) # Set up the generation arguments generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) # Start the model generation thread t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Yield generated text chunks outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, retry_btn=None, clear_btn=None, undo_btn=None, chatbot=gr.Chatbot(avatar_images=('user.png', 'bot.png'), bubble_full_width = False), examples=[ ["Can you explain the rules very briefly again?"], ["How much should I invest in order to win?"], ["What happened in the last round?"], ["What is my probability to win if I do not share anything?"], ], ) with gr.Blocks(css="style.css", theme=gr.themes.Default(primary_hue=gr.themes.colors.emerald,secondary_hue=gr.themes.colors.indigo)) as demo: gr.Markdown(DESCRIPTION) chat_interface.render() gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20).launch() #demo.queue(max_size=20) demo.launch(share=True, debug=True)