Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +507 -426
- requirements.txt +14 -12
app.py
CHANGED
|
@@ -1,427 +1,508 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline, AutoModel
|
| 3 |
-
import gradio as gr
|
| 4 |
-
import re
|
| 5 |
-
import os
|
| 6 |
-
import json
|
| 7 |
-
import chardet
|
| 8 |
-
from sklearn.metrics import precision_score, recall_score, f1_score
|
| 9 |
-
import time
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
)
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
return
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
""")
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline, AutoModel
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import re
|
| 5 |
+
import os
|
| 6 |
+
import json
|
| 7 |
+
import chardet
|
| 8 |
+
from sklearn.metrics import precision_score, recall_score, f1_score
|
| 9 |
+
import time
|
| 10 |
+
# ======================== 数据库模块 ========================
|
| 11 |
+
import pymysql
|
| 12 |
+
from configparser import ConfigParser
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def get_db_connection():
|
| 16 |
+
config = ConfigParser()
|
| 17 |
+
config.read('db_config.ini')
|
| 18 |
+
|
| 19 |
+
return pymysql.connect(
|
| 20 |
+
host=config.get('mysql', 'host'),
|
| 21 |
+
user=config.get('mysql', 'user'),
|
| 22 |
+
password=config.get('mysql', 'password'),
|
| 23 |
+
database=config.get('mysql', 'database'),
|
| 24 |
+
port=config.getint('mysql', 'port', fallback=3306),
|
| 25 |
+
charset=config.get('mysql', 'charset', fallback='utf8mb4'),
|
| 26 |
+
cursorclass=pymysql.cursors.DictCursor
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def save_to_db(table, data):
|
| 31 |
+
try:
|
| 32 |
+
conn = get_db_connection()
|
| 33 |
+
with conn.cursor() as cursor:
|
| 34 |
+
placeholders = ', '.join(['%s'] * len(data))
|
| 35 |
+
columns = ', '.join(data.keys())
|
| 36 |
+
sql = f"INSERT INTO {table} ({columns}) VALUES ({placeholders})"
|
| 37 |
+
cursor.execute(sql, list(data.values()))
|
| 38 |
+
conn.commit()
|
| 39 |
+
except Exception as e:
|
| 40 |
+
print(f"数据库写入失败: {e}")
|
| 41 |
+
finally:
|
| 42 |
+
conn.close()
|
| 43 |
+
|
| 44 |
+
# ======================== 模型加载 ========================
|
| 45 |
+
NER_MODEL_NAME = "hfl/chinese-roberta-wwm-ext-large"
|
| 46 |
+
bert_tokenizer = AutoTokenizer.from_pretrained(NER_MODEL_NAME)
|
| 47 |
+
bert_ner_model = AutoModelForTokenClassification.from_pretrained(NER_MODEL_NAME)
|
| 48 |
+
bert_ner_pipeline = pipeline(
|
| 49 |
+
"ner",
|
| 50 |
+
model=bert_ner_model,
|
| 51 |
+
tokenizer=bert_tokenizer,
|
| 52 |
+
aggregation_strategy="first"
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
LABEL_MAPPING = {
|
| 56 |
+
"address": "LOC",
|
| 57 |
+
"company": "ORG",
|
| 58 |
+
"name": "PER",
|
| 59 |
+
"organization": "ORG",
|
| 60 |
+
"position": "TITLE"
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
chatglm_model, chatglm_tokenizer = None, None
|
| 64 |
+
use_chatglm = False
|
| 65 |
+
try:
|
| 66 |
+
chatglm_model_name = "THUDM/chatglm-6b-int4"
|
| 67 |
+
chatglm_tokenizer = AutoTokenizer.from_pretrained(chatglm_model_name, trust_remote_code=True)
|
| 68 |
+
chatglm_model = AutoModel.from_pretrained(
|
| 69 |
+
chatglm_model_name,
|
| 70 |
+
trust_remote_code=True,
|
| 71 |
+
device_map="cpu",
|
| 72 |
+
torch_dtype=torch.float32
|
| 73 |
+
).eval()
|
| 74 |
+
use_chatglm = True
|
| 75 |
+
print("✅ 4-bit量化版ChatGLM加载成功")
|
| 76 |
+
except Exception as e:
|
| 77 |
+
print(f"❌ ChatGLM加载失败: {e}")
|
| 78 |
+
|
| 79 |
+
# ======================== 知识图谱结构 ========================
|
| 80 |
+
knowledge_graph = {"entities": set(), "relations": set()}
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def update_knowledge_graph(entities, relations):
|
| 84 |
+
# 保存实体
|
| 85 |
+
for e in entities:
|
| 86 |
+
if isinstance(e, dict) and 'text' in e and 'type' in e:
|
| 87 |
+
save_to_db('entities', {
|
| 88 |
+
'text': e['text'],
|
| 89 |
+
'type': e['type'],
|
| 90 |
+
'start_pos': e.get('start', -1),
|
| 91 |
+
'end_pos': e.get('end', -1),
|
| 92 |
+
'source': 'user_input'
|
| 93 |
+
})
|
| 94 |
+
|
| 95 |
+
# 保存关系
|
| 96 |
+
for r in relations:
|
| 97 |
+
if isinstance(r, dict) and all(k in r for k in ("head", "tail", "relation")):
|
| 98 |
+
save_to_db('relations', {
|
| 99 |
+
'head_entity': r['head'],
|
| 100 |
+
'tail_entity': r['tail'],
|
| 101 |
+
'relation_type': r['relation'],
|
| 102 |
+
'source_text': '' # 可添加原文关联
|
| 103 |
+
})
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def visualize_kg_text():
|
| 107 |
+
nodes = [f"{ent[0]} ({ent[1]})" for ent in knowledge_graph["entities"]]
|
| 108 |
+
edges = [f"{h} --[{r}]-> {t}" for h, t, r in knowledge_graph["relations"]]
|
| 109 |
+
return "\n".join(["📌 实体:"] + nodes + ["", "📎 关系:"] + edges)
|
| 110 |
+
|
| 111 |
+
# ======================== 实体识别(NER) ========================
|
| 112 |
+
def merge_adjacent_entities(entities):
|
| 113 |
+
merged = []
|
| 114 |
+
for entity in entities:
|
| 115 |
+
if not merged:
|
| 116 |
+
merged.append(entity)
|
| 117 |
+
continue
|
| 118 |
+
|
| 119 |
+
last = merged[-1]
|
| 120 |
+
# 合并相邻的同类型实体
|
| 121 |
+
if (entity["type"] == last["type"] and
|
| 122 |
+
entity["start"] == last["end"] and
|
| 123 |
+
entity["text"] not in last["text"]):
|
| 124 |
+
merged[-1] = {
|
| 125 |
+
"text": last["text"] + entity["text"],
|
| 126 |
+
"type": last["type"],
|
| 127 |
+
"start": last["start"],
|
| 128 |
+
"end": entity["end"]
|
| 129 |
+
}
|
| 130 |
+
else:
|
| 131 |
+
merged.append(entity)
|
| 132 |
+
return merged
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def ner(text, model_type="bert"):
|
| 136 |
+
start_time = time.time()
|
| 137 |
+
if model_type == "chatglm" and use_chatglm:
|
| 138 |
+
try:
|
| 139 |
+
prompt = f"""请从以下文本中识别所有实体,严格按照JSON列表格式返回,每个实体包含text、type、start、end字段:
|
| 140 |
+
示例:[{{"text": "北京", "type": "LOC", "start": 0, "end": 2}}]
|
| 141 |
+
文本:{text}"""
|
| 142 |
+
response = chatglm_model.chat(chatglm_tokenizer, prompt, temperature=0.1)
|
| 143 |
+
if isinstance(response, tuple):
|
| 144 |
+
response = response[0]
|
| 145 |
+
|
| 146 |
+
# 增强 JSON 解析
|
| 147 |
+
try:
|
| 148 |
+
json_str = re.search(r'\[.*\]', response, re.DOTALL).group()
|
| 149 |
+
entities = json.loads(json_str)
|
| 150 |
+
# 验证字段
|
| 151 |
+
valid_entities = []
|
| 152 |
+
for ent in entities:
|
| 153 |
+
if all(k in ent for k in ("text", "type", "start", "end")):
|
| 154 |
+
valid_entities.append(ent)
|
| 155 |
+
return valid_entities, time.time() - start_time
|
| 156 |
+
except Exception as e:
|
| 157 |
+
print(f"JSON 解析失败: {e}")
|
| 158 |
+
return [], time.time() - start_time
|
| 159 |
+
except Exception as e:
|
| 160 |
+
print(f"ChatGLM 调用失败:{e}")
|
| 161 |
+
return [], time.time() - start_time
|
| 162 |
+
|
| 163 |
+
# 使用微调的 BERT 中文 NER 模型
|
| 164 |
+
raw_results = []
|
| 165 |
+
max_len = 510 # 安全一点,留一点空余
|
| 166 |
+
text_chunks = [text[i:i + max_len] for i in range(0, len(text), max_len)]
|
| 167 |
+
|
| 168 |
+
for idx, chunk in enumerate(text_chunks):
|
| 169 |
+
chunk_results = bert_ner_pipeline(chunk)
|
| 170 |
+
# 修正每个 chunk 里识别的实体在整体文本中的位置
|
| 171 |
+
for r in chunk_results:
|
| 172 |
+
r["start"] += idx * max_len
|
| 173 |
+
r["end"] += idx * max_len
|
| 174 |
+
raw_results.extend(chunk_results)
|
| 175 |
+
|
| 176 |
+
entities = []
|
| 177 |
+
for r in raw_results:
|
| 178 |
+
mapped_type = LABEL_MAPPING.get(r['entity_group'], r['entity_group'])
|
| 179 |
+
entities.append({
|
| 180 |
+
"text": r['word'].replace(' ', ''),
|
| 181 |
+
"start": r['start'],
|
| 182 |
+
"end": r['end'],
|
| 183 |
+
"type": mapped_type
|
| 184 |
+
})
|
| 185 |
+
|
| 186 |
+
# 执行合并处理
|
| 187 |
+
entities = merge_adjacent_entities(entities)
|
| 188 |
+
return entities, time.time() - start_time
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
# ======================== 关系抽取(RE) ========================
|
| 192 |
+
def re_extract(entities, text):
|
| 193 |
+
# 参数校验
|
| 194 |
+
if not entities or not text:
|
| 195 |
+
return []
|
| 196 |
+
|
| 197 |
+
# 实体类型过滤(根据业务需求调整)
|
| 198 |
+
valid_entity_types = {"PER", "LOC", "ORG", "TITLE"}
|
| 199 |
+
filtered_entities = [e for e in entities if e.get("type") in valid_entity_types]
|
| 200 |
+
|
| 201 |
+
# --------------------- 处理单实体场景 ---------------------
|
| 202 |
+
if len(filtered_entities) == 1:
|
| 203 |
+
single_relations = []
|
| 204 |
+
ent = filtered_entities[0]
|
| 205 |
+
|
| 206 |
+
# 规则1:人物职位检测
|
| 207 |
+
if ent["type"] == "PER":
|
| 208 |
+
position_keywords = ["CEO", "经理", "总监", "工程师", "教授"]
|
| 209 |
+
for keyword in position_keywords:
|
| 210 |
+
if keyword in text:
|
| 211 |
+
single_relations.append({
|
| 212 |
+
"head": ent["text"],
|
| 213 |
+
"tail": keyword,
|
| 214 |
+
"relation": "担任职位"
|
| 215 |
+
})
|
| 216 |
+
break
|
| 217 |
+
|
| 218 |
+
# 规则2:机构地点检测
|
| 219 |
+
if ent["type"] in ["ORG", "LOC"]:
|
| 220 |
+
location_verbs = ["位于", "坐落于", "地处"]
|
| 221 |
+
for verb in location_verbs:
|
| 222 |
+
if verb in text:
|
| 223 |
+
match = re.search(fr"{ent['text']}{verb}(.*?)[,。]", text)
|
| 224 |
+
if match:
|
| 225 |
+
single_relations.append({
|
| 226 |
+
"head": ent["text"],
|
| 227 |
+
"tail": match.group(1).strip(),
|
| 228 |
+
"relation": "位置"
|
| 229 |
+
})
|
| 230 |
+
break
|
| 231 |
+
return single_relations
|
| 232 |
+
|
| 233 |
+
# --------------------- 多实体关系抽取 ---------------------
|
| 234 |
+
relations = []
|
| 235 |
+
|
| 236 |
+
# 方案1:使用ChatGLM抽取关系
|
| 237 |
+
if use_chatglm and len(filtered_entities) >= 2:
|
| 238 |
+
try:
|
| 239 |
+
entity_list = [e["text"] for e in filtered_entities]
|
| 240 |
+
prompt = f"""请分析以下文本中的实体关系,严格按照JSON列表格式返回:
|
| 241 |
+
文本内容:{text}
|
| 242 |
+
候选实体:{entity_list}
|
| 243 |
+
要求:
|
| 244 |
+
1. 只返回存在明确关系的实体对
|
| 245 |
+
2. 关系类型使用:属于、位于、任职于、合作、其他
|
| 246 |
+
3. 示例格式:[{{"head":"实体1", "tail":"实体2", "relation":"关系类型"}}]
|
| 247 |
+
请直接返回JSON,不要多余内容:"""
|
| 248 |
+
|
| 249 |
+
response = chatglm_model.chat(chatglm_tokenizer, prompt, temperature=0.01)
|
| 250 |
+
if isinstance(response, tuple):
|
| 251 |
+
response = response[0]
|
| 252 |
+
|
| 253 |
+
# 增强JSON解析
|
| 254 |
+
try:
|
| 255 |
+
json_str = re.search(r'(\[.*?\])', response, re.DOTALL)
|
| 256 |
+
if json_str:
|
| 257 |
+
json_str = json_str.group(1)
|
| 258 |
+
json_str = re.sub(r'[\u201c\u201d]', '"', json_str) # 处理中文引号
|
| 259 |
+
json_str = re.sub(r'(?<!,)\n', '', json_str) # 保留逗号后的换行
|
| 260 |
+
relations = json.loads(json_str)
|
| 261 |
+
|
| 262 |
+
# 验证关系有效性
|
| 263 |
+
valid_relations = []
|
| 264 |
+
valid_rel_types = {"属于", "位于", "任职于", "合作", "其他"}
|
| 265 |
+
for rel in relations:
|
| 266 |
+
if (isinstance(rel, dict) and
|
| 267 |
+
rel.get("head") in entity_list and
|
| 268 |
+
rel.get("tail") in entity_list and
|
| 269 |
+
rel.get("relation") in valid_rel_types):
|
| 270 |
+
valid_relations.append(rel)
|
| 271 |
+
relations = valid_relations
|
| 272 |
+
except Exception as e:
|
| 273 |
+
print(f"[DEBUG] 关系解析失败: {str(e)}")
|
| 274 |
+
|
| 275 |
+
except Exception as e:
|
| 276 |
+
print(f"ChatGLM关系抽取异常: {str(e)}")
|
| 277 |
+
|
| 278 |
+
# 方案2:规则兜底(当模型不可用或未抽取出关系时)
|
| 279 |
+
if len(relations) == 0:
|
| 280 |
+
# 规则1:A位于B
|
| 281 |
+
location_matches = re.finditer(r'([^\s,。]+)[位于|坐落于|地处]([^\s,。]+)', text)
|
| 282 |
+
for match in location_matches:
|
| 283 |
+
head, tail = match.groups()
|
| 284 |
+
relations.append({"head": head, "tail": tail, "relation": "位于"})
|
| 285 |
+
|
| 286 |
+
# 规则2:A属于B
|
| 287 |
+
belong_matches = re.finditer(r'([^\s,。]+)(属于|隶属于)([^\s,。]+)', text)
|
| 288 |
+
for match in belong_matches:
|
| 289 |
+
head, _, tail = match.groups()
|
| 290 |
+
relations.append({"head": head, "tail": tail, "relation": "属于"})
|
| 291 |
+
|
| 292 |
+
# 规则3:人物-机构关系
|
| 293 |
+
person_org_pattern = r'([\u4e00-\u9fa5]{2,4})(现任|担任|就职于)([\u4e00-\u9fa5]+?公司|[\u4e00-\u9fa5]+?大学)'
|
| 294 |
+
for match in re.finditer(person_org_pattern, text):
|
| 295 |
+
head, _, tail = match.groups()
|
| 296 |
+
relations.append({"head": head, "tail": tail, "relation": "任职于"})
|
| 297 |
+
|
| 298 |
+
# 后处理:去重和验证
|
| 299 |
+
seen = set()
|
| 300 |
+
final_relations = []
|
| 301 |
+
for rel in relations:
|
| 302 |
+
key = (rel["head"], rel["tail"], rel["relation"])
|
| 303 |
+
if key not in seen:
|
| 304 |
+
# 验证实体是否存在
|
| 305 |
+
head_exists = any(e["text"] == rel["head"] for e in filtered_entities)
|
| 306 |
+
tail_exists = any(e["text"] == rel["tail"] for e in filtered_entities)
|
| 307 |
+
if head_exists and tail_exists:
|
| 308 |
+
final_relations.append(rel)
|
| 309 |
+
seen.add(key)
|
| 310 |
+
|
| 311 |
+
return final_relations
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
# ======================== 文本分析主流程 ========================
|
| 315 |
+
def process_text(text, model_type="bert"):
|
| 316 |
+
entities, duration = ner(text, model_type)
|
| 317 |
+
relations = re_extract(entities, text)
|
| 318 |
+
update_knowledge_graph(entities, relations)
|
| 319 |
+
|
| 320 |
+
ent_text = "\n".join(f"{e['text']} ({e['type']}) [{e['start']}-{e['end']}]" for e in entities)
|
| 321 |
+
rel_text = "\n".join(f"{r['head']} --[{r['relation']}]-> {r['tail']}" for r in relations)
|
| 322 |
+
kg_text = visualize_kg_text()
|
| 323 |
+
return ent_text, rel_text, kg_text, f"{duration:.2f} 秒"
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
def process_file(file, model_type="bert"):
|
| 327 |
+
try:
|
| 328 |
+
with open(file.name, 'rb') as f:
|
| 329 |
+
content = f.read()
|
| 330 |
+
|
| 331 |
+
if len(content) > 5 * 1024 * 1024:
|
| 332 |
+
return "❌ 文件太大", "", "", ""
|
| 333 |
+
|
| 334 |
+
# 检测编码
|
| 335 |
+
try:
|
| 336 |
+
encoding = chardet.detect(content)['encoding'] or 'utf-8'
|
| 337 |
+
text = content.decode(encoding)
|
| 338 |
+
except UnicodeDecodeError:
|
| 339 |
+
# 尝试常见中文编码
|
| 340 |
+
for enc in ['gb18030', 'utf-16', 'big5']:
|
| 341 |
+
try:
|
| 342 |
+
text = content.decode(enc)
|
| 343 |
+
break
|
| 344 |
+
except:
|
| 345 |
+
continue
|
| 346 |
+
else:
|
| 347 |
+
return "❌ 编码解析失败", "", "", ""
|
| 348 |
+
|
| 349 |
+
return process_text(text, model_type)
|
| 350 |
+
except Exception as e:
|
| 351 |
+
return f"❌ 文件处理错误: {str(e)}", "", "", ""
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
# ======================== 模型评估与自动标注 ========================
|
| 355 |
+
def convert_telegram_json_to_eval_format(path):
|
| 356 |
+
with open(path, encoding="utf-8") as f:
|
| 357 |
+
data = json.load(f)
|
| 358 |
+
if isinstance(data, dict) and "text" in data:
|
| 359 |
+
return [{"text": data["text"], "entities": [
|
| 360 |
+
{"text": data["text"][e["start"]:e["end"]]} for e in data.get("entities", [])
|
| 361 |
+
]}]
|
| 362 |
+
elif isinstance(data, list):
|
| 363 |
+
return data
|
| 364 |
+
elif isinstance(data, dict) and "messages" in data:
|
| 365 |
+
result = []
|
| 366 |
+
for m in data.get("messages", []):
|
| 367 |
+
if isinstance(m.get("text"), str):
|
| 368 |
+
result.append({"text": m["text"], "entities": []})
|
| 369 |
+
elif isinstance(m.get("text"), list):
|
| 370 |
+
txt = ''.join([x["text"] if isinstance(x, dict) else x for x in m["text"]])
|
| 371 |
+
result.append({"text": txt, "entities": []})
|
| 372 |
+
return result
|
| 373 |
+
return []
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
def evaluate_ner_model(data, model_type):
|
| 377 |
+
tp, fp, fn = 0, 0, 0
|
| 378 |
+
POS_TOLERANCE = 1
|
| 379 |
+
|
| 380 |
+
for item in data:
|
| 381 |
+
text = item["text"]
|
| 382 |
+
# 处理标注数据
|
| 383 |
+
gold_entities = []
|
| 384 |
+
for e in item.get("entities", []):
|
| 385 |
+
if "text" in e and "type" in e:
|
| 386 |
+
norm_type = LABEL_MAPPING.get(e["type"], e["type"])
|
| 387 |
+
gold_entities.append({
|
| 388 |
+
"text": e["text"],
|
| 389 |
+
"type": norm_type,
|
| 390 |
+
"start": e.get("start", -1),
|
| 391 |
+
"end": e.get("end", -1)
|
| 392 |
+
})
|
| 393 |
+
|
| 394 |
+
# 获取预测结果
|
| 395 |
+
pred_entities, _ = ner(text, model_type)
|
| 396 |
+
|
| 397 |
+
# 初始化匹配状态
|
| 398 |
+
matched_gold = [False] * len(gold_entities)
|
| 399 |
+
matched_pred = [False] * len(pred_entities)
|
| 400 |
+
|
| 401 |
+
# 遍历预测实体寻找匹配
|
| 402 |
+
for p_idx, p in enumerate(pred_entities):
|
| 403 |
+
for g_idx, g in enumerate(gold_entities):
|
| 404 |
+
if not matched_gold[g_idx] and \
|
| 405 |
+
p["text"] == g["text"] and \
|
| 406 |
+
p["type"] == g["type"] and \
|
| 407 |
+
abs(p["start"] - g["start"]) <= POS_TOLERANCE and \
|
| 408 |
+
abs(p["end"] - g["end"]) <= POS_TOLERANCE:
|
| 409 |
+
matched_gold[g_idx] = True
|
| 410 |
+
matched_pred[p_idx] = True
|
| 411 |
+
break
|
| 412 |
+
|
| 413 |
+
# 统计指标
|
| 414 |
+
tp += sum(matched_pred)
|
| 415 |
+
fp += len(pred_entities) - sum(matched_pred)
|
| 416 |
+
fn += len(gold_entities) - sum(matched_gold)
|
| 417 |
+
|
| 418 |
+
# 处理除零情况
|
| 419 |
+
precision = tp / (tp + fp) if (tp + fp) > 0 else 0
|
| 420 |
+
recall = tp / (tp + fn) if (tp + fn) > 0 else 0
|
| 421 |
+
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
|
| 422 |
+
|
| 423 |
+
return (f"Precision: {precision:.2f}\n"
|
| 424 |
+
f"Recall: {recall:.2f}\n"
|
| 425 |
+
f"F1: {f1:.2f}")
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
def auto_annotate(file, model_type):
|
| 429 |
+
data = convert_telegram_json_to_eval_format(file.name)
|
| 430 |
+
for item in data:
|
| 431 |
+
ents, _ = ner(item["text"], model_type)
|
| 432 |
+
item["entities"] = ents
|
| 433 |
+
return json.dumps(data, ensure_ascii=False, indent=2)
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
def save_json(json_text):
|
| 437 |
+
fname = f"auto_labeled_{int(time.time())}.json"
|
| 438 |
+
with open(fname, "w", encoding="utf-8") as f:
|
| 439 |
+
f.write(json_text)
|
| 440 |
+
return fname
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
# ======================== 数据集导入 ========================
|
| 444 |
+
def import_dataset(path="D:/云边智算/暗语识别/filtered_results"):
|
| 445 |
+
import os
|
| 446 |
+
import json
|
| 447 |
+
|
| 448 |
+
for filename in os.listdir(path):
|
| 449 |
+
if filename.endswith('.json'):
|
| 450 |
+
filepath = os.path.join(path, filename)
|
| 451 |
+
with open(filepath, 'r', encoding='utf-8') as f:
|
| 452 |
+
data = json.load(f)
|
| 453 |
+
# 调用现有处理流程
|
| 454 |
+
process_text(data['text'])
|
| 455 |
+
print(f"已处理文件: {filename}")
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
# ======================== Gradio 界面 ========================
|
| 459 |
+
with gr.Blocks(css="""
|
| 460 |
+
.kg-graph {height: 500px; overflow-y: auto;}
|
| 461 |
+
.warning {color: #ff6b6b;}
|
| 462 |
+
""") as demo:
|
| 463 |
+
gr.Markdown("# 🤖 聊天记录实体关系识别系统")
|
| 464 |
+
|
| 465 |
+
with gr.Tab("📄 文本分析"):
|
| 466 |
+
input_text = gr.Textbox(lines=6, label="输入文本")
|
| 467 |
+
model_type = gr.Radio(["bert", "chatglm"], value="bert", label="选择模型")
|
| 468 |
+
btn = gr.Button("开始分析")
|
| 469 |
+
out1 = gr.Textbox(label="识别��体")
|
| 470 |
+
out2 = gr.Textbox(label="识别关系")
|
| 471 |
+
out3 = gr.Textbox(label="知识图谱")
|
| 472 |
+
out4 = gr.Textbox(label="耗时")
|
| 473 |
+
btn.click(fn=process_text, inputs=[input_text, model_type], outputs=[out1, out2, out3, out4])
|
| 474 |
+
|
| 475 |
+
with gr.Tab("🗂 文件分析"):
|
| 476 |
+
file_input = gr.File(file_types=[".txt", ".json"])
|
| 477 |
+
file_btn = gr.Button("上传并分析")
|
| 478 |
+
fout1, fout2, fout3, fout4 = gr.Textbox(), gr.Textbox(), gr.Textbox(), gr.Textbox()
|
| 479 |
+
file_btn.click(fn=process_file, inputs=[file_input, model_type], outputs=[fout1, fout2, fout3, fout4])
|
| 480 |
+
|
| 481 |
+
with gr.Tab("📊 模型评估"):
|
| 482 |
+
eval_file = gr.File(label="上传标注 JSON")
|
| 483 |
+
eval_model = gr.Radio(["bert", "chatglm"], value="bert")
|
| 484 |
+
eval_btn = gr.Button("开始评估")
|
| 485 |
+
eval_output = gr.Textbox(label="评估结果", lines=5)
|
| 486 |
+
eval_btn.click(lambda f, m: evaluate_ner_model(convert_telegram_json_to_eval_format(f.name), m),
|
| 487 |
+
[eval_file, eval_model], eval_output)
|
| 488 |
+
|
| 489 |
+
with gr.Tab("✏️ 自动标注"):
|
| 490 |
+
raw_file = gr.File(label="上传 Telegram 原始 JSON")
|
| 491 |
+
auto_model = gr.Radio(["bert", "chatglm"], value="bert")
|
| 492 |
+
auto_btn = gr.Button("自动标注")
|
| 493 |
+
marked_texts = gr.Textbox(label="标注结果", lines=20)
|
| 494 |
+
download_btn = gr.Button("💾 下载标注文件")
|
| 495 |
+
auto_btn.click(fn=auto_annotate, inputs=[raw_file, auto_model], outputs=marked_texts)
|
| 496 |
+
download_btn.click(fn=save_json, inputs=marked_texts, outputs=gr.File())
|
| 497 |
+
|
| 498 |
+
with gr.Tab("📂 数据管理"):
|
| 499 |
+
gr.Markdown("### 数据集导入")
|
| 500 |
+
dataset_path = gr.Textbox(
|
| 501 |
+
value="D:/云边智算/暗语识别/filtered_results",
|
| 502 |
+
label="数据集路径"
|
| 503 |
+
)
|
| 504 |
+
import_btn = gr.Button("导入数据集到数据库")
|
| 505 |
+
import_output = gr.Textbox(label="导入日志")
|
| 506 |
+
import_btn.click(fn=lambda: import_dataset(dataset_path.value), outputs=import_output)
|
| 507 |
+
|
| 508 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
CHANGED
|
@@ -1,12 +1,14 @@
|
|
| 1 |
-
gradio==3.50.2
|
| 2 |
-
transformers==4.39.3
|
| 3 |
-
torch>=2.1.0
|
| 4 |
-
networkx>=3.0
|
| 5 |
-
python-dotenv>=1.0.0
|
| 6 |
-
sentencepiece>=0.2.0
|
| 7 |
-
cpm-kernels>=1.0.11
|
| 8 |
-
accelerate>=0.27.0
|
| 9 |
-
scikit-learn>=1.3.0
|
| 10 |
-
chardet>=5.2.0
|
| 11 |
-
pandas>=2.1.0
|
| 12 |
-
pyvis>=0.3.2
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==3.50.2
|
| 2 |
+
transformers==4.39.3
|
| 3 |
+
torch>=2.1.0,<3.0.0
|
| 4 |
+
networkx>=3.0
|
| 5 |
+
python-dotenv>=1.0.0
|
| 6 |
+
sentencepiece>=0.2.0
|
| 7 |
+
cpm-kernels>=1.0.11
|
| 8 |
+
accelerate>=0.27.0
|
| 9 |
+
scikit-learn>=1.3.0
|
| 10 |
+
chardet>=5.2.0
|
| 11 |
+
pandas>=2.1.0
|
| 12 |
+
pyvis>=0.3.2
|
| 13 |
+
pymysql==1.1.0
|
| 14 |
+
protobuf==3.20.3 # 避免与新版transformers冲突
|