Spaces:
Runtime error
Runtime error
Update app to use SDXL Refiner for image-to-image generation
Browse files
app.py
CHANGED
|
@@ -2,49 +2,67 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
|
| 5 |
-
import spaces
|
| 6 |
-
from diffusers import
|
|
|
|
| 7 |
import torch
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
model_repo_id = "stabilityai/
|
| 11 |
|
| 12 |
if torch.cuda.is_available():
|
| 13 |
torch_dtype = torch.float16
|
| 14 |
else:
|
| 15 |
torch_dtype = torch.float32
|
| 16 |
|
| 17 |
-
pipe =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
pipe = pipe.to(device)
|
| 19 |
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
MAX_IMAGE_SIZE = 1024
|
| 22 |
|
| 23 |
-
|
| 24 |
-
@spaces.GPU #[uncomment to use ZeroGPU]
|
| 25 |
def infer(
|
| 26 |
prompt,
|
|
|
|
| 27 |
negative_prompt,
|
| 28 |
seed,
|
| 29 |
randomize_seed,
|
| 30 |
-
|
| 31 |
-
height,
|
| 32 |
guidance_scale,
|
| 33 |
num_inference_steps,
|
| 34 |
progress=gr.Progress(track_tqdm=True),
|
| 35 |
):
|
|
|
|
|
|
|
|
|
|
| 36 |
if randomize_seed:
|
| 37 |
seed = random.randint(0, MAX_SEED)
|
| 38 |
|
| 39 |
generator = torch.Generator().manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
image = pipe(
|
| 42 |
prompt=prompt,
|
|
|
|
| 43 |
negative_prompt=negative_prompt,
|
| 44 |
guidance_scale=guidance_scale,
|
| 45 |
num_inference_steps=num_inference_steps,
|
| 46 |
-
|
| 47 |
-
height=height,
|
| 48 |
generator=generator,
|
| 49 |
).images[0]
|
| 50 |
|
|
@@ -52,41 +70,52 @@ def infer(
|
|
| 52 |
|
| 53 |
|
| 54 |
examples = [
|
| 55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 56 |
-
"An astronaut riding a green horse",
|
| 57 |
-
"A delicious ceviche cheesecake slice",
|
| 58 |
]
|
| 59 |
|
| 60 |
css = """
|
| 61 |
#col-container {
|
| 62 |
margin: 0 auto;
|
| 63 |
-
max-width:
|
| 64 |
}
|
| 65 |
"""
|
| 66 |
|
| 67 |
with gr.Blocks(css=css) as demo:
|
| 68 |
with gr.Column(elem_id="col-container"):
|
| 69 |
-
gr.Markdown(" #
|
| 70 |
|
| 71 |
with gr.Row():
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
)
|
| 79 |
-
|
| 80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
| 81 |
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
with gr.Accordion("Advanced Settings", open=False):
|
| 85 |
negative_prompt = gr.Text(
|
| 86 |
label="Negative prompt",
|
| 87 |
max_lines=1,
|
| 88 |
placeholder="Enter a negative prompt",
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
)
|
| 91 |
|
| 92 |
seed = gr.Slider(
|
|
@@ -99,51 +128,41 @@ with gr.Blocks(css=css) as demo:
|
|
| 99 |
|
| 100 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 101 |
|
| 102 |
-
with gr.Row():
|
| 103 |
-
width = gr.Slider(
|
| 104 |
-
label="Width",
|
| 105 |
-
minimum=256,
|
| 106 |
-
maximum=MAX_IMAGE_SIZE,
|
| 107 |
-
step=32,
|
| 108 |
-
value=1024, # Replace with defaults that work for your model
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
-
height = gr.Slider(
|
| 112 |
-
label="Height",
|
| 113 |
-
minimum=256,
|
| 114 |
-
maximum=MAX_IMAGE_SIZE,
|
| 115 |
-
step=32,
|
| 116 |
-
value=1024, # Replace with defaults that work for your model
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
with gr.Row():
|
| 120 |
guidance_scale = gr.Slider(
|
| 121 |
label="Guidance scale",
|
| 122 |
-
minimum=
|
| 123 |
-
maximum=
|
| 124 |
step=0.1,
|
| 125 |
-
value=
|
| 126 |
)
|
| 127 |
|
| 128 |
num_inference_steps = gr.Slider(
|
| 129 |
label="Number of inference steps",
|
| 130 |
minimum=1,
|
| 131 |
-
maximum=
|
| 132 |
step=1,
|
| 133 |
-
value=
|
| 134 |
)
|
| 135 |
|
| 136 |
-
gr.Examples(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
gr.on(
|
| 138 |
-
triggers=[run_button.click
|
| 139 |
fn=infer,
|
| 140 |
inputs=[
|
| 141 |
prompt,
|
|
|
|
| 142 |
negative_prompt,
|
| 143 |
seed,
|
| 144 |
randomize_seed,
|
| 145 |
-
|
| 146 |
-
height,
|
| 147 |
guidance_scale,
|
| 148 |
num_inference_steps,
|
| 149 |
],
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
|
| 5 |
+
import spaces
|
| 6 |
+
from diffusers import StableDiffusionXLImg2ImgPipeline
|
| 7 |
+
from diffusers.utils import load_image
|
| 8 |
import torch
|
| 9 |
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
+
model_repo_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
|
| 12 |
|
| 13 |
if torch.cuda.is_available():
|
| 14 |
torch_dtype = torch.float16
|
| 15 |
else:
|
| 16 |
torch_dtype = torch.float32
|
| 17 |
|
| 18 |
+
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
| 19 |
+
model_repo_id,
|
| 20 |
+
torch_dtype=torch_dtype,
|
| 21 |
+
variant="fp16" if torch.cuda.is_available() else None,
|
| 22 |
+
use_safetensors=True
|
| 23 |
+
)
|
| 24 |
pipe = pipe.to(device)
|
| 25 |
|
| 26 |
MAX_SEED = np.iinfo(np.int32).max
|
| 27 |
MAX_IMAGE_SIZE = 1024
|
| 28 |
|
| 29 |
+
@spaces.GPU
|
|
|
|
| 30 |
def infer(
|
| 31 |
prompt,
|
| 32 |
+
input_image,
|
| 33 |
negative_prompt,
|
| 34 |
seed,
|
| 35 |
randomize_seed,
|
| 36 |
+
strength,
|
|
|
|
| 37 |
guidance_scale,
|
| 38 |
num_inference_steps,
|
| 39 |
progress=gr.Progress(track_tqdm=True),
|
| 40 |
):
|
| 41 |
+
if input_image is None:
|
| 42 |
+
return None, seed
|
| 43 |
+
|
| 44 |
if randomize_seed:
|
| 45 |
seed = random.randint(0, MAX_SEED)
|
| 46 |
|
| 47 |
generator = torch.Generator().manual_seed(seed)
|
| 48 |
+
|
| 49 |
+
# Process the image
|
| 50 |
+
if input_image is not None:
|
| 51 |
+
width, height = input_image.size
|
| 52 |
+
|
| 53 |
+
# Ensure width and height are valid for the model
|
| 54 |
+
if width > MAX_IMAGE_SIZE:
|
| 55 |
+
width = MAX_IMAGE_SIZE
|
| 56 |
+
if height > MAX_IMAGE_SIZE:
|
| 57 |
+
height = MAX_IMAGE_SIZE
|
| 58 |
|
| 59 |
image = pipe(
|
| 60 |
prompt=prompt,
|
| 61 |
+
image=input_image,
|
| 62 |
negative_prompt=negative_prompt,
|
| 63 |
guidance_scale=guidance_scale,
|
| 64 |
num_inference_steps=num_inference_steps,
|
| 65 |
+
strength=strength,
|
|
|
|
| 66 |
generator=generator,
|
| 67 |
).images[0]
|
| 68 |
|
|
|
|
| 70 |
|
| 71 |
|
| 72 |
examples = [
|
| 73 |
+
["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
|
| 74 |
+
["An astronaut riding a green horse", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
|
| 75 |
+
["A delicious ceviche cheesecake slice", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
|
| 76 |
]
|
| 77 |
|
| 78 |
css = """
|
| 79 |
#col-container {
|
| 80 |
margin: 0 auto;
|
| 81 |
+
max-width: 840px;
|
| 82 |
}
|
| 83 |
"""
|
| 84 |
|
| 85 |
with gr.Blocks(css=css) as demo:
|
| 86 |
with gr.Column(elem_id="col-container"):
|
| 87 |
+
gr.Markdown(" # SDXL Refiner - Image-to-Image")
|
| 88 |
|
| 89 |
with gr.Row():
|
| 90 |
+
with gr.Column(scale=1):
|
| 91 |
+
input_image = gr.Image(
|
| 92 |
+
label="Input Image",
|
| 93 |
+
type="pil",
|
| 94 |
+
height=400
|
| 95 |
+
)
|
| 96 |
+
with gr.Column(scale=1):
|
| 97 |
+
result = gr.Image(label="Result", height=400)
|
|
|
|
| 98 |
|
| 99 |
+
prompt = gr.Text(
|
| 100 |
+
label="Prompt",
|
| 101 |
+
placeholder="Enter your prompt",
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
run_button = gr.Button("Run", variant="primary")
|
| 105 |
|
| 106 |
with gr.Accordion("Advanced Settings", open=False):
|
| 107 |
negative_prompt = gr.Text(
|
| 108 |
label="Negative prompt",
|
| 109 |
max_lines=1,
|
| 110 |
placeholder="Enter a negative prompt",
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
strength = gr.Slider(
|
| 114 |
+
label="Strength",
|
| 115 |
+
minimum=0.0,
|
| 116 |
+
maximum=1.0,
|
| 117 |
+
step=0.05,
|
| 118 |
+
value=0.7,
|
| 119 |
)
|
| 120 |
|
| 121 |
seed = gr.Slider(
|
|
|
|
| 128 |
|
| 129 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
with gr.Row():
|
| 132 |
guidance_scale = gr.Slider(
|
| 133 |
label="Guidance scale",
|
| 134 |
+
minimum=1.0,
|
| 135 |
+
maximum=20.0,
|
| 136 |
step=0.1,
|
| 137 |
+
value=7.5,
|
| 138 |
)
|
| 139 |
|
| 140 |
num_inference_steps = gr.Slider(
|
| 141 |
label="Number of inference steps",
|
| 142 |
minimum=1,
|
| 143 |
+
maximum=100,
|
| 144 |
step=1,
|
| 145 |
+
value=30,
|
| 146 |
)
|
| 147 |
|
| 148 |
+
gr.Examples(
|
| 149 |
+
examples=examples,
|
| 150 |
+
inputs=[prompt, input_image],
|
| 151 |
+
outputs=[result, seed],
|
| 152 |
+
fn=infer,
|
| 153 |
+
cache_examples=True,
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
gr.on(
|
| 157 |
+
triggers=[run_button.click],
|
| 158 |
fn=infer,
|
| 159 |
inputs=[
|
| 160 |
prompt,
|
| 161 |
+
input_image,
|
| 162 |
negative_prompt,
|
| 163 |
seed,
|
| 164 |
randomize_seed,
|
| 165 |
+
strength,
|
|
|
|
| 166 |
guidance_scale,
|
| 167 |
num_inference_steps,
|
| 168 |
],
|