Commit
·
eebc859
1
Parent(s):
3531b9b
Add gradio app
Browse files- DEPLOYMENT_GUIDE.md +91 -0
- app.py +612 -0
- assets/ScribeAId.svg +13 -0
- requirements.txt +14 -0
DEPLOYMENT_GUIDE.md
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚀 Guida al Deployment su Hugging Face Spaces
|
| 2 |
+
|
| 3 |
+
## 1. Creazione dello Space
|
| 4 |
+
|
| 5 |
+
1. Vai su [Hugging Face Spaces](https://huggingface.co/spaces)
|
| 6 |
+
2. Clicca su "Create new Space"
|
| 7 |
+
3. Scegli un nome per il tuo Space (es. `scribeaid-demo`)
|
| 8 |
+
4. Seleziona **Gradio** come SDK
|
| 9 |
+
5. Scegli **Public** o **Private** in base alle tue esigenze
|
| 10 |
+
6. Clicca su "Create Space"
|
| 11 |
+
|
| 12 |
+
## 2. Upload dei File
|
| 13 |
+
|
| 14 |
+
Carica tutti i file di questa cartella nello Space:
|
| 15 |
+
|
| 16 |
+
```
|
| 17 |
+
scribeaid-demo/
|
| 18 |
+
├── app.py # ✅ File principale dell'app
|
| 19 |
+
├── requirements.txt # ✅ Dipendenze Python
|
| 20 |
+
├── README.md # ✅ Metadata e descrizione
|
| 21 |
+
├── .gitignore # ✅ File da ignorare
|
| 22 |
+
└── assets/
|
| 23 |
+
└── ScribeAId.svg # ✅ Logo dell'app
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
**IMPORTANTE**: NON caricare la cartella `content/` che contiene i modelli - questi verranno scaricati automaticamente da Hugging Face Hub.
|
| 27 |
+
|
| 28 |
+
## 3. Configurazione dei Secrets
|
| 29 |
+
|
| 30 |
+
Nel tuo Space, vai su **Settings** → **Variables and secrets** e aggiungi:
|
| 31 |
+
|
| 32 |
+
### Secrets Obbligatori:
|
| 33 |
+
|
| 34 |
+
```
|
| 35 |
+
HF_MODEL_ID = "ReportAId/whisper-medium-it-finetuned"
|
| 36 |
+
BASE_WHISPER_MODEL_ID = "openai/whisper-medium"
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
### Secrets Opzionali (se necessari):
|
| 40 |
+
|
| 41 |
+
```
|
| 42 |
+
HF_TOKEN = "hf_xxxxxxxxxxxxxxxxxxxxxxxxxx"
|
| 43 |
+
HUGGINGFACEHUB_API_TOKEN = "hf_xxxxxxxxxxxxxxxxxxxxxxxxxx"
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
**Nota**: Il token HF è necessario solo se i tuoi modelli sono privati.
|
| 47 |
+
|
| 48 |
+
## 4. Configurazione Hardware
|
| 49 |
+
|
| 50 |
+
Per prestazioni ottimali, vai su **Settings** → **Hardware** e seleziona:
|
| 51 |
+
|
| 52 |
+
- **CPU basic** (gratuito) - per test
|
| 53 |
+
- **CPU upgrade** - per uso moderato
|
| 54 |
+
- **T4 small** - per prestazioni migliori (richiede abbonamento)
|
| 55 |
+
|
| 56 |
+
## 5. Deploy e Test
|
| 57 |
+
|
| 58 |
+
1. Dopo aver caricato i file e configurato i secrets, lo Space si avvierà automaticamente
|
| 59 |
+
2. Controlla i **Logs** per eventuali errori
|
| 60 |
+
3. Una volta avviato, testa l'app caricando un file audio
|
| 61 |
+
|
| 62 |
+
## 6. Risoluzione Problemi Comuni
|
| 63 |
+
|
| 64 |
+
### Errore "Model not found"
|
| 65 |
+
- Verifica che `HF_MODEL_ID` e `BASE_WHISPER_MODEL_ID` siano corretti
|
| 66 |
+
- Se il modello è privato, assicurati che `HF_TOKEN` sia configurato
|
| 67 |
+
|
| 68 |
+
### Errore "Out of memory"
|
| 69 |
+
- Prova con un hardware più potente
|
| 70 |
+
- L'app è ottimizzata per funzionare anche su CPU
|
| 71 |
+
|
| 72 |
+
### Errore "Audio processing failed"
|
| 73 |
+
- Verifica che il file audio sia in un formato supportato (WAV, MP3, etc.)
|
| 74 |
+
- L'audio deve essere di almeno 5-10 secondi per risultati ottimali
|
| 75 |
+
|
| 76 |
+
## 7. Monitoraggio
|
| 77 |
+
|
| 78 |
+
- Controlla regolarmente i **Logs** dello Space
|
| 79 |
+
- Monitora l'utilizzo delle risorse in **Settings** → **Usage**
|
| 80 |
+
|
| 81 |
+
## 8. Aggiornamenti
|
| 82 |
+
|
| 83 |
+
Per aggiornare l'app:
|
| 84 |
+
|
| 85 |
+
1. Modifica i file localmente
|
| 86 |
+
2. Carica i file aggiornati nello Space
|
| 87 |
+
3. Lo Space si riavvierà automaticamente
|
| 88 |
+
|
| 89 |
+
---
|
| 90 |
+
|
| 91 |
+
🎯 **Il tuo Space sarà disponibile all'indirizzo**: `https://huggingface.co/spaces/TUO_USERNAME/NOME_SPACE`
|
app.py
ADDED
|
@@ -0,0 +1,612 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import tempfile
|
| 4 |
+
import time
|
| 5 |
+
import logging
|
| 6 |
+
import gc
|
| 7 |
+
from dataclasses import dataclass
|
| 8 |
+
from typing import Optional, Tuple, List, Any, Dict
|
| 9 |
+
from contextlib import contextmanager
|
| 10 |
+
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import torch
|
| 13 |
+
import psutil
|
| 14 |
+
from dotenv import load_dotenv
|
| 15 |
+
|
| 16 |
+
load_dotenv()
|
| 17 |
+
|
| 18 |
+
# Audio preprocessing not available in Hugging Face Spaces deployment
|
| 19 |
+
PREPROCESSING_AVAILABLE = False
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_env_or_secret(key: str, default: Optional[str] = None) -> Optional[str]:
|
| 23 |
+
"""Get environment variable or default."""
|
| 24 |
+
return os.environ.get(key, default)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@dataclass
|
| 28 |
+
class InferenceMetrics:
|
| 29 |
+
"""Track inference performance metrics."""
|
| 30 |
+
|
| 31 |
+
processing_time: float
|
| 32 |
+
memory_usage: float
|
| 33 |
+
device_used: str
|
| 34 |
+
dtype_used: str
|
| 35 |
+
model_size_mb: Optional[float] = None
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
@dataclass
|
| 39 |
+
class PreprocessingConfig:
|
| 40 |
+
"""Configuration for audio preprocessing pipeline."""
|
| 41 |
+
|
| 42 |
+
normalize_format: bool = True
|
| 43 |
+
normalize_volume: bool = True
|
| 44 |
+
reduce_noise: bool = False
|
| 45 |
+
remove_silence: bool = False
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def load_asr_pipeline(
|
| 49 |
+
model_id: str,
|
| 50 |
+
base_model_id: str,
|
| 51 |
+
device_pref: str = "auto",
|
| 52 |
+
hf_token: Optional[str] = None,
|
| 53 |
+
dtype_pref: str = "auto",
|
| 54 |
+
chunk_length_s: Optional[int] = None,
|
| 55 |
+
return_timestamps: bool = False,
|
| 56 |
+
):
|
| 57 |
+
logging.basicConfig(level=logging.INFO)
|
| 58 |
+
logger = logging.getLogger(__name__)
|
| 59 |
+
|
| 60 |
+
logger.info(f"Loading ASR pipeline for model: {model_id}")
|
| 61 |
+
logger.info(
|
| 62 |
+
f"Device preference: {device_pref}, Token provided: {hf_token is not None}"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
import torch
|
| 66 |
+
from transformers import pipeline
|
| 67 |
+
|
| 68 |
+
# Pick optimal device for inference
|
| 69 |
+
device_str = "cpu"
|
| 70 |
+
if device_pref == "auto":
|
| 71 |
+
if torch.cuda.is_available():
|
| 72 |
+
device_str = "cuda"
|
| 73 |
+
logger.info(f"Using CUDA: {torch.cuda.get_device_name()}")
|
| 74 |
+
elif getattr(torch.backends, "mps", None) and torch.backends.mps.is_available():
|
| 75 |
+
device_str = "mps"
|
| 76 |
+
logger.info("Using Apple Silicon MPS for inference")
|
| 77 |
+
else:
|
| 78 |
+
device_str = "cpu"
|
| 79 |
+
logger.info("Using CPU for inference")
|
| 80 |
+
else:
|
| 81 |
+
device_str = device_pref
|
| 82 |
+
|
| 83 |
+
# Pick dtype - optimized for inference performance
|
| 84 |
+
dtype = None
|
| 85 |
+
if dtype_pref == "auto":
|
| 86 |
+
# For whisper-medium models, use float32 for stability in medical transcription
|
| 87 |
+
if "whisper-medium" in model_id:
|
| 88 |
+
dtype = torch.float32
|
| 89 |
+
logger.info(
|
| 90 |
+
f"Using float32 for {model_id} (medical transcription stability)"
|
| 91 |
+
)
|
| 92 |
+
elif device_str == "cuda":
|
| 93 |
+
dtype = torch.float16 # Use half precision on GPU for speed
|
| 94 |
+
logger.info("Using float16 on CUDA for faster inference")
|
| 95 |
+
else:
|
| 96 |
+
dtype = torch.float32
|
| 97 |
+
else:
|
| 98 |
+
dtype = {"float32": torch.float32, "float16": torch.float16}.get(
|
| 99 |
+
dtype_pref, torch.float32
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
logger.info("Pipeline configuration:")
|
| 103 |
+
logger.info(f" Model: {model_id}")
|
| 104 |
+
logger.info(f" Base model: {base_model_id}")
|
| 105 |
+
logger.info(f" Dtype: {dtype}")
|
| 106 |
+
logger.info(f" Device: {device_str}")
|
| 107 |
+
logger.info(f" Chunk length: {chunk_length_s}s")
|
| 108 |
+
logger.info(f" Return timestamps: {return_timestamps}")
|
| 109 |
+
|
| 110 |
+
# Use ultra-simplified approach to avoid all compatibility issues
|
| 111 |
+
try:
|
| 112 |
+
logger.info(
|
| 113 |
+
"Setting up ultra-simplified pipeline to avoid forced_decoder_ids conflicts..."
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# Create pipeline with absolute minimal configuration
|
| 117 |
+
asr = pipeline(
|
| 118 |
+
task="automatic-speech-recognition",
|
| 119 |
+
model=model_id,
|
| 120 |
+
torch_dtype=dtype,
|
| 121 |
+
device=0
|
| 122 |
+
if device_str == "cuda"
|
| 123 |
+
else ("mps" if device_str == "mps" else "cpu"),
|
| 124 |
+
token=hf_token,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# Post-loading cleanup to remove any forced_decoder_ids
|
| 128 |
+
if hasattr(asr.model, "generation_config"):
|
| 129 |
+
if hasattr(asr.model.generation_config, "forced_decoder_ids"):
|
| 130 |
+
logger.info("Removing forced_decoder_ids from model generation config")
|
| 131 |
+
asr.model.generation_config.forced_decoder_ids = None
|
| 132 |
+
|
| 133 |
+
# Set basic parameters after loading
|
| 134 |
+
if chunk_length_s:
|
| 135 |
+
logger.info(f"Setting chunk_length_s to {chunk_length_s}")
|
| 136 |
+
|
| 137 |
+
logger.info(f"Successfully created ultra-simplified pipeline for: {model_id}")
|
| 138 |
+
|
| 139 |
+
except Exception as e:
|
| 140 |
+
logger.error(f"Ultra-simplified pipeline creation failed: {e}")
|
| 141 |
+
logger.info("Falling back to absolute minimal settings...")
|
| 142 |
+
|
| 143 |
+
try:
|
| 144 |
+
# Fallback with absolute minimal settings
|
| 145 |
+
fallback_dtype = torch.float32
|
| 146 |
+
|
| 147 |
+
asr = pipeline(
|
| 148 |
+
task="automatic-speech-recognition",
|
| 149 |
+
model=model_id,
|
| 150 |
+
torch_dtype=fallback_dtype,
|
| 151 |
+
device="cpu", # Force CPU for maximum compatibility
|
| 152 |
+
token=hf_token,
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
# Post-loading cleanup
|
| 156 |
+
if hasattr(asr.model, "generation_config"):
|
| 157 |
+
if hasattr(asr.model.generation_config, "forced_decoder_ids"):
|
| 158 |
+
logger.info("Removing forced_decoder_ids from fallback model")
|
| 159 |
+
asr.model.generation_config.forced_decoder_ids = None
|
| 160 |
+
|
| 161 |
+
device_str = "cpu"
|
| 162 |
+
dtype = fallback_dtype
|
| 163 |
+
logger.info(
|
| 164 |
+
f"Minimal fallback pipeline created with dtype: {fallback_dtype}"
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
except Exception as fallback_error:
|
| 168 |
+
logger.error(f"Minimal fallback failed: {fallback_error}")
|
| 169 |
+
raise
|
| 170 |
+
|
| 171 |
+
return asr, device_str, str(dtype).replace("torch.", "")
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
@contextmanager
|
| 175 |
+
def memory_monitor():
|
| 176 |
+
"""Context manager to monitor memory usage during inference."""
|
| 177 |
+
process = psutil.Process()
|
| 178 |
+
start_memory = process.memory_info().rss / 1024 / 1024 # MB
|
| 179 |
+
yield
|
| 180 |
+
end_memory = process.memory_info().rss / 1024 / 1024 # MB
|
| 181 |
+
return end_memory - start_memory
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def transcribe_local(
|
| 185 |
+
audio_path: str,
|
| 186 |
+
model_id: str,
|
| 187 |
+
base_model_id: str,
|
| 188 |
+
language: Optional[str],
|
| 189 |
+
task: str,
|
| 190 |
+
device_pref: str,
|
| 191 |
+
dtype_pref: str,
|
| 192 |
+
hf_token: Optional[str],
|
| 193 |
+
chunk_length_s: Optional[int],
|
| 194 |
+
stride_length_s: Optional[int],
|
| 195 |
+
return_timestamps: bool,
|
| 196 |
+
) -> Dict[str, Any]:
|
| 197 |
+
logger = logging.getLogger(__name__)
|
| 198 |
+
logger.info(f"Starting transcription: {os.path.basename(audio_path)}")
|
| 199 |
+
logger.info(f"Model: {model_id}")
|
| 200 |
+
|
| 201 |
+
# Validate audio_path
|
| 202 |
+
if audio_path is None:
|
| 203 |
+
raise ValueError("Audio path is None")
|
| 204 |
+
if not isinstance(audio_path, (str, bytes, os.PathLike)):
|
| 205 |
+
raise TypeError(
|
| 206 |
+
f"Audio path must be str, bytes or os.PathLike, got {type(audio_path)}"
|
| 207 |
+
)
|
| 208 |
+
if not os.path.exists(audio_path):
|
| 209 |
+
raise FileNotFoundError(f"Audio file not found: {audio_path}")
|
| 210 |
+
|
| 211 |
+
# Load ASR pipeline with performance monitoring
|
| 212 |
+
start_time = time.time()
|
| 213 |
+
|
| 214 |
+
asr, device_str, dtype_str = load_asr_pipeline(
|
| 215 |
+
model_id=model_id,
|
| 216 |
+
base_model_id=base_model_id,
|
| 217 |
+
device_pref=device_pref,
|
| 218 |
+
hf_token=hf_token,
|
| 219 |
+
dtype_pref=dtype_pref,
|
| 220 |
+
chunk_length_s=chunk_length_s,
|
| 221 |
+
return_timestamps=return_timestamps,
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
load_time = time.time() - start_time
|
| 225 |
+
logger.info(f"Model loaded in {load_time:.2f}s")
|
| 226 |
+
|
| 227 |
+
# Simplified configuration to avoid compatibility issues
|
| 228 |
+
# Let the pipeline handle generation parameters internally
|
| 229 |
+
logger.info("Using simplified configuration to avoid model compatibility issues")
|
| 230 |
+
|
| 231 |
+
# Setup inference parameters with performance monitoring
|
| 232 |
+
try:
|
| 233 |
+
# Start with minimal parameters to avoid conflicts
|
| 234 |
+
asr_kwargs = {}
|
| 235 |
+
|
| 236 |
+
# Only add parameters that are safe and supported
|
| 237 |
+
if return_timestamps:
|
| 238 |
+
asr_kwargs["return_timestamps"] = return_timestamps
|
| 239 |
+
logger.info("Timestamps enabled")
|
| 240 |
+
|
| 241 |
+
# Apply chunking strategy only if supported
|
| 242 |
+
if chunk_length_s:
|
| 243 |
+
try:
|
| 244 |
+
asr_kwargs["chunk_length_s"] = chunk_length_s
|
| 245 |
+
logger.info(f"Using chunking strategy: {chunk_length_s}s")
|
| 246 |
+
except Exception as chunk_error:
|
| 247 |
+
logger.warning(f"Chunking not supported: {chunk_error}")
|
| 248 |
+
|
| 249 |
+
if stride_length_s is not None:
|
| 250 |
+
try:
|
| 251 |
+
asr_kwargs["stride_length_s"] = stride_length_s
|
| 252 |
+
logger.info(f"Using stride: {stride_length_s}s")
|
| 253 |
+
except Exception as stride_error:
|
| 254 |
+
logger.warning(f"Stride not supported: {stride_error}")
|
| 255 |
+
|
| 256 |
+
logger.info(f"Inference parameters configured: {list(asr_kwargs.keys())}")
|
| 257 |
+
|
| 258 |
+
# Run inference with performance monitoring
|
| 259 |
+
inference_start = time.time()
|
| 260 |
+
memory_before = psutil.Process().memory_info().rss / 1024 / 1024 # MB
|
| 261 |
+
|
| 262 |
+
try:
|
| 263 |
+
# Primary inference attempt with safe parameters
|
| 264 |
+
if asr_kwargs:
|
| 265 |
+
result = asr(audio_path, **asr_kwargs)
|
| 266 |
+
else:
|
| 267 |
+
# Fallback to no parameters if all failed
|
| 268 |
+
result = asr(audio_path)
|
| 269 |
+
|
| 270 |
+
inference_time = time.time() - inference_start
|
| 271 |
+
memory_after = psutil.Process().memory_info().rss / 1024 / 1024 # MB
|
| 272 |
+
memory_used = memory_after - memory_before
|
| 273 |
+
|
| 274 |
+
logger.info(f"Inference completed successfully in {inference_time:.2f}s")
|
| 275 |
+
logger.info(f"Memory used: {memory_used:.1f}MB")
|
| 276 |
+
|
| 277 |
+
except Exception as e:
|
| 278 |
+
error_msg = str(e)
|
| 279 |
+
logger.warning(f"Inference failed with parameters: {error_msg}")
|
| 280 |
+
|
| 281 |
+
# Try with absolutely minimal parameters
|
| 282 |
+
if "forced_decoder_ids" in error_msg:
|
| 283 |
+
logger.info(
|
| 284 |
+
"Detected forced_decoder_ids error, trying with no parameters..."
|
| 285 |
+
)
|
| 286 |
+
elif (
|
| 287 |
+
"probability tensor contains either inf, nan or element < 0"
|
| 288 |
+
in error_msg
|
| 289 |
+
):
|
| 290 |
+
logger.info(
|
| 291 |
+
"Detected numerical instability, trying with no parameters..."
|
| 292 |
+
)
|
| 293 |
+
else:
|
| 294 |
+
logger.info("Unknown error, trying with no parameters...")
|
| 295 |
+
|
| 296 |
+
try:
|
| 297 |
+
inference_start = time.time()
|
| 298 |
+
result = asr(audio_path) # No parameters at all
|
| 299 |
+
inference_time = time.time() - inference_start
|
| 300 |
+
memory_used = 0 # Reset memory tracking
|
| 301 |
+
|
| 302 |
+
logger.info(f"Minimal inference completed in {inference_time:.2f}s")
|
| 303 |
+
except Exception as final_error:
|
| 304 |
+
logger.error(f"All inference attempts failed: {final_error}")
|
| 305 |
+
raise
|
| 306 |
+
|
| 307 |
+
except Exception as e:
|
| 308 |
+
logger.error(f"Inference failed: {e}")
|
| 309 |
+
raise
|
| 310 |
+
|
| 311 |
+
# Cleanup GPU memory after inference
|
| 312 |
+
if device_str == "cuda":
|
| 313 |
+
torch.cuda.empty_cache()
|
| 314 |
+
gc.collect()
|
| 315 |
+
|
| 316 |
+
# Return results with performance metrics
|
| 317 |
+
meta = {
|
| 318 |
+
"device": device_str,
|
| 319 |
+
"dtype": dtype_str,
|
| 320 |
+
"inference_time": inference_time,
|
| 321 |
+
"memory_used_mb": memory_used,
|
| 322 |
+
"model_type": "original" if model_id == base_model_id else "fine-tuned",
|
| 323 |
+
}
|
| 324 |
+
|
| 325 |
+
return {"result": result, "meta": meta}
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def handle_whisper_problematic_output(text: str, model_name: str = "Whisper") -> dict:
|
| 329 |
+
"""Gestisce gli output problematici di Whisper come '!', '.', stringhe vuote, ecc."""
|
| 330 |
+
if not text:
|
| 331 |
+
return {
|
| 332 |
+
"text": "[WHISPER ISSUE: Output vuoto - Audio troppo corto o silenzioso]",
|
| 333 |
+
"is_problematic": True,
|
| 334 |
+
"original": text,
|
| 335 |
+
"issue_type": "empty",
|
| 336 |
+
}
|
| 337 |
+
|
| 338 |
+
text_stripped = text.strip()
|
| 339 |
+
|
| 340 |
+
# Casi problematici comuni
|
| 341 |
+
problematic_outputs = {
|
| 342 |
+
"!": "Audio troppo corto/silenzioso",
|
| 343 |
+
".": "Audio di bassa qualità",
|
| 344 |
+
"?": "Audio incomprensibile",
|
| 345 |
+
"...": "Audio troppo lungo senza parlato",
|
| 346 |
+
"--": "Audio distorto",
|
| 347 |
+
"—": "Audio con troppo rumore",
|
| 348 |
+
" per!": "Audio parzialmente comprensibile",
|
| 349 |
+
"per!": "Audio parzialmente comprensibile",
|
| 350 |
+
}
|
| 351 |
+
|
| 352 |
+
if text_stripped in problematic_outputs:
|
| 353 |
+
return {
|
| 354 |
+
"text": f"[WHISPER ISSUE: '{text_stripped}' - {problematic_outputs[text_stripped]}]",
|
| 355 |
+
"is_problematic": True,
|
| 356 |
+
"original": text,
|
| 357 |
+
"issue_type": text_stripped,
|
| 358 |
+
"suggestion": problematic_outputs[text_stripped],
|
| 359 |
+
}
|
| 360 |
+
|
| 361 |
+
# Testo troppo corto (meno di 3 caratteri e non alfabetico)
|
| 362 |
+
if len(text_stripped) <= 2 and not text_stripped.isalpha():
|
| 363 |
+
return {
|
| 364 |
+
"text": f"[WHISPER ISSUE: '{text_stripped}' - Output troppo corto/simbolico]",
|
| 365 |
+
"is_problematic": True,
|
| 366 |
+
"original": text,
|
| 367 |
+
"issue_type": "short_symbolic",
|
| 368 |
+
}
|
| 369 |
+
|
| 370 |
+
return {"text": text, "is_problematic": False, "original": text}
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
def transcribe_comparison(audio_file):
|
| 374 |
+
"""Main function for Gradio interface."""
|
| 375 |
+
if audio_file is None:
|
| 376 |
+
return "❌ Nessun file audio fornito", "❌ Nessun file audio fornito"
|
| 377 |
+
|
| 378 |
+
# Model configuration
|
| 379 |
+
model_id = get_env_or_secret("HF_MODEL_ID")
|
| 380 |
+
base_model_id = get_env_or_secret("BASE_WHISPER_MODEL_ID")
|
| 381 |
+
hf_token = get_env_or_secret("HF_TOKEN") or get_env_or_secret(
|
| 382 |
+
"HUGGINGFACEHUB_API_TOKEN"
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
if not model_id or not base_model_id:
|
| 386 |
+
error_msg = "❌ Modelli non configurati. Impostare HF_MODEL_ID e BASE_WHISPER_MODEL_ID nelle variabili d'ambiente"
|
| 387 |
+
return error_msg, error_msg
|
| 388 |
+
|
| 389 |
+
# Preprocessing sempre attivo (nascosto all'utente)
|
| 390 |
+
# Non viene più utilizzato nel codice ma potrebbe servire per future implementazioni
|
| 391 |
+
|
| 392 |
+
# Fixed settings optimized for medical transcription
|
| 393 |
+
language = "it" # Always Italian for ScribeAId
|
| 394 |
+
task = "transcribe"
|
| 395 |
+
return_ts = True # Timestamps for medical report segments
|
| 396 |
+
device_pref = "auto" # Auto-detect best device
|
| 397 |
+
dtype_pref = "auto" # Auto-select optimal precision
|
| 398 |
+
chunk_len = 7 # 7-second chunks for better context
|
| 399 |
+
stride_len = 1 # Minimal stride for accuracy
|
| 400 |
+
|
| 401 |
+
try:
|
| 402 |
+
# Use the audio file path directly from Gradio
|
| 403 |
+
tmp_path = audio_file
|
| 404 |
+
|
| 405 |
+
original_result = None
|
| 406 |
+
finetuned_result = None
|
| 407 |
+
original_text = ""
|
| 408 |
+
finetuned_text = ""
|
| 409 |
+
|
| 410 |
+
try:
|
| 411 |
+
# Transcribe with original model
|
| 412 |
+
original_result = transcribe_local(
|
| 413 |
+
audio_path=tmp_path,
|
| 414 |
+
model_id=base_model_id,
|
| 415 |
+
base_model_id=base_model_id,
|
| 416 |
+
language=language,
|
| 417 |
+
task=task,
|
| 418 |
+
device_pref=device_pref,
|
| 419 |
+
dtype_pref=dtype_pref,
|
| 420 |
+
hf_token=None, # Base model doesn't need token
|
| 421 |
+
chunk_length_s=int(chunk_len) if chunk_len else None,
|
| 422 |
+
stride_length_s=int(stride_len) if stride_len else None,
|
| 423 |
+
return_timestamps=return_ts,
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
# Extract text from result
|
| 427 |
+
if isinstance(original_result["result"], dict):
|
| 428 |
+
original_text = original_result["result"].get(
|
| 429 |
+
"text"
|
| 430 |
+
) or original_result["result"].get("transcription")
|
| 431 |
+
elif isinstance(original_result["result"], str):
|
| 432 |
+
original_text = original_result["result"]
|
| 433 |
+
|
| 434 |
+
if original_text:
|
| 435 |
+
result = handle_whisper_problematic_output(
|
| 436 |
+
original_text, "Original Whisper"
|
| 437 |
+
)
|
| 438 |
+
if result["is_problematic"]:
|
| 439 |
+
original_text = f"⚠️ {result['text']}\n\n💡 Suggerimenti:\n• Registra almeno 5-10 secondi di audio\n• Parla chiaramente e ad alto volume\n• Avvicinati al microfono\n• Evita rumori di fondo"
|
| 440 |
+
else:
|
| 441 |
+
original_text = result["text"]
|
| 442 |
+
else:
|
| 443 |
+
original_text = "❌ Nessun testo restituito dal modello originale"
|
| 444 |
+
|
| 445 |
+
except Exception as e:
|
| 446 |
+
original_text = f"❌ Errore modello originale: {str(e)}"
|
| 447 |
+
|
| 448 |
+
try:
|
| 449 |
+
# Transcribe with fine-tuned model
|
| 450 |
+
finetuned_result = transcribe_local(
|
| 451 |
+
audio_path=tmp_path,
|
| 452 |
+
model_id=model_id,
|
| 453 |
+
base_model_id=base_model_id,
|
| 454 |
+
language=language,
|
| 455 |
+
task=task,
|
| 456 |
+
device_pref=device_pref,
|
| 457 |
+
dtype_pref=dtype_pref,
|
| 458 |
+
hf_token=hf_token or None,
|
| 459 |
+
chunk_length_s=int(chunk_len) if chunk_len else None,
|
| 460 |
+
stride_length_s=int(stride_len) if stride_len else None,
|
| 461 |
+
return_timestamps=return_ts,
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
# Extract text from result
|
| 465 |
+
if isinstance(finetuned_result["result"], dict):
|
| 466 |
+
finetuned_text = finetuned_result["result"].get(
|
| 467 |
+
"text"
|
| 468 |
+
) or finetuned_result["result"].get("transcription")
|
| 469 |
+
elif isinstance(finetuned_result["result"], str):
|
| 470 |
+
finetuned_text = finetuned_result["result"]
|
| 471 |
+
|
| 472 |
+
if finetuned_text:
|
| 473 |
+
result = handle_whisper_problematic_output(
|
| 474 |
+
finetuned_text, "Fine-tuned Model"
|
| 475 |
+
)
|
| 476 |
+
if result["is_problematic"]:
|
| 477 |
+
finetuned_text = f"⚠️ {result['text']}\n\n💡 Suggerimenti:\n• Registra almeno 5-10 secondi di audio\n• Parla chiaramente e ad alto volume\n• Avvicinati al microfono\n• Evita rumori di fondo"
|
| 478 |
+
else:
|
| 479 |
+
finetuned_text = result["text"]
|
| 480 |
+
else:
|
| 481 |
+
finetuned_text = "❌ Nessun testo restituito dal modello fine-tuned"
|
| 482 |
+
|
| 483 |
+
except Exception as e:
|
| 484 |
+
finetuned_text = f"❌ Errore modello fine-tuned: {str(e)}"
|
| 485 |
+
|
| 486 |
+
# GPU memory cleanup
|
| 487 |
+
if torch.cuda.is_available():
|
| 488 |
+
torch.cuda.empty_cache()
|
| 489 |
+
gc.collect()
|
| 490 |
+
|
| 491 |
+
return original_text, finetuned_text
|
| 492 |
+
|
| 493 |
+
except Exception as e:
|
| 494 |
+
error_msg = f"❌ Errore generale: {str(e)}"
|
| 495 |
+
return error_msg, error_msg
|
| 496 |
+
|
| 497 |
+
|
| 498 |
+
# Gradio interface
|
| 499 |
+
def create_interface():
|
| 500 |
+
"""Create and configure the Gradio interface."""
|
| 501 |
+
|
| 502 |
+
model_id = get_env_or_secret("HF_MODEL_ID", "ReportAId/whisper-medium-it-finetuned")
|
| 503 |
+
base_model_id = get_env_or_secret("BASE_WHISPER_MODEL_ID", "openai/whisper-medium")
|
| 504 |
+
|
| 505 |
+
# Carica il logo SVG inline per garantirne la visualizzazione anche senza routing file
|
| 506 |
+
logo_html = None
|
| 507 |
+
try:
|
| 508 |
+
logo_path = os.path.join(os.path.dirname(__file__), "assets", "ScribeAId.svg")
|
| 509 |
+
with open(logo_path, "r", encoding="utf-8") as f:
|
| 510 |
+
svg_content = f.read()
|
| 511 |
+
# Wrappa lo svg in un contenitore centrato
|
| 512 |
+
logo_html = f"""
|
| 513 |
+
<div style=\"text-align: center; margin: 16px 0 8px;\">
|
| 514 |
+
<div style=\"display:inline-block; height:60px;\">{svg_content}</div>
|
| 515 |
+
</div>
|
| 516 |
+
"""
|
| 517 |
+
except Exception:
|
| 518 |
+
# Fallback al path file= se per qualche motivo non riusciamo a leggere il file
|
| 519 |
+
logo_html = """
|
| 520 |
+
<div style=\"text-align: center; margin: 16px 0 8px;\">
|
| 521 |
+
<img src=\"file=assets/ScribeAId.svg\" alt=\"ScribeAId\" style=\"height: 60px; margin-bottom: 8px;\">
|
| 522 |
+
</div>
|
| 523 |
+
"""
|
| 524 |
+
|
| 525 |
+
with gr.Blocks(
|
| 526 |
+
title="ScribeAId - Medical Transcription",
|
| 527 |
+
theme=gr.themes.Default(primary_hue="blue"),
|
| 528 |
+
css=".gradio-container{max-width: 900px !important; margin: 0 auto !important;} .center-col{display:flex;flex-direction:column;align-items:center;} .center-col .wrap{width:100%;}",
|
| 529 |
+
) as demo:
|
| 530 |
+
# Header con logo ScribeAId (semplice, bianco/nero)
|
| 531 |
+
gr.HTML(logo_html)
|
| 532 |
+
gr.Markdown("""
|
| 533 |
+
Quest’applicazione confronta un Whisper V3 di base con il modello open-source fine-tuned pubblicato da ReportAId su dati ambulatoriali italiani. È progettato per mitigare errori noti e migliorare le performance. Carica un audio o registra la voce: noterai trascrizioni più accurate di termini clinici come “Holter delle 24 ore”, “fibrillazione atriale” o “pressione sistolica”.
|
| 534 |
+
""")
|
| 535 |
+
|
| 536 |
+
with gr.Row():
|
| 537 |
+
with gr.Column():
|
| 538 |
+
gr.Markdown(f"""
|
| 539 |
+
**⚙️ Impostazioni**
|
| 540 |
+
- Modello originale: `{base_model_id}`
|
| 541 |
+
- Modello fine-tuned: `{model_id}`
|
| 542 |
+
- Lingua: Italiano (it)
|
| 543 |
+
- Preprocessing audio: ottimizzato per registrazioni mediche
|
| 544 |
+
""")
|
| 545 |
+
|
| 546 |
+
gr.Markdown("---")
|
| 547 |
+
|
| 548 |
+
# Titolo sezione input
|
| 549 |
+
gr.Markdown("## Input")
|
| 550 |
+
|
| 551 |
+
# Audio input e pulsante allineati a sinistra
|
| 552 |
+
audio_input = gr.Audio(
|
| 553 |
+
label="📥 Registra dal microfono o carica un file",
|
| 554 |
+
type="filepath",
|
| 555 |
+
sources=["microphone", "upload"],
|
| 556 |
+
format="wav",
|
| 557 |
+
streaming=False,
|
| 558 |
+
interactive=True,
|
| 559 |
+
)
|
| 560 |
+
transcribe_btn = gr.Button("🚀 Trascrivi e Confronta", variant="primary")
|
| 561 |
+
|
| 562 |
+
gr.Markdown("---")
|
| 563 |
+
|
| 564 |
+
gr.Markdown("## Output")
|
| 565 |
+
|
| 566 |
+
with gr.Row():
|
| 567 |
+
with gr.Column():
|
| 568 |
+
gr.Markdown("### Modello base (Whisper V3)")
|
| 569 |
+
original_output = gr.Textbox(
|
| 570 |
+
label="Transcription",
|
| 571 |
+
lines=12,
|
| 572 |
+
interactive=False,
|
| 573 |
+
show_copy_button=True,
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
with gr.Column():
|
| 577 |
+
gr.Markdown("### Modello fine-tuned ReportAId")
|
| 578 |
+
finetuned_output = gr.Textbox(
|
| 579 |
+
label="Transcription",
|
| 580 |
+
lines=12,
|
| 581 |
+
interactive=False,
|
| 582 |
+
show_copy_button=True,
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
# Click event
|
| 586 |
+
transcribe_btn.click(
|
| 587 |
+
fn=transcribe_comparison,
|
| 588 |
+
inputs=[audio_input],
|
| 589 |
+
outputs=[original_output, finetuned_output],
|
| 590 |
+
show_progress=True,
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
return demo
|
| 594 |
+
|
| 595 |
+
|
| 596 |
+
if __name__ == "__main__":
|
| 597 |
+
# Configure logging
|
| 598 |
+
logging.basicConfig(
|
| 599 |
+
level=logging.INFO,
|
| 600 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
| 601 |
+
)
|
| 602 |
+
|
| 603 |
+
demo = create_interface()
|
| 604 |
+
# Launch configuration for Hugging Face Spaces
|
| 605 |
+
demo.launch(
|
| 606 |
+
server_name="0.0.0.0",
|
| 607 |
+
server_port=7860,
|
| 608 |
+
share=False,
|
| 609 |
+
show_error=True,
|
| 610 |
+
inbrowser=False,
|
| 611 |
+
quiet=False,
|
| 612 |
+
)
|
assets/ScribeAId.svg
ADDED
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==5.45.0
|
| 2 |
+
transformers>=4.41.0
|
| 3 |
+
accelerate>=0.31.0
|
| 4 |
+
torch>=2.1.0
|
| 5 |
+
torchaudio>=2.1.0
|
| 6 |
+
numpy>=1.24.0
|
| 7 |
+
requests>=2.31.0
|
| 8 |
+
soundfile>=0.12.0
|
| 9 |
+
librosa>=0.10.0
|
| 10 |
+
pydub>=0.25.0
|
| 11 |
+
psutil>=5.9.0
|
| 12 |
+
python-dotenv>=1.0.0
|
| 13 |
+
datasets>=2.14.0
|
| 14 |
+
huggingface-hub>=0.17.0
|