import os import sys import tempfile import time import logging import gc import io import threading from dataclasses import dataclass from typing import Optional, Tuple, List, Any, Dict from contextlib import contextmanager import gradio as gr import torch import psutil from dotenv import load_dotenv import numpy as np from pydub import AudioSegment from pydub.silence import split_on_silence import soundfile as sf import noisereduce from huggingface_hub import snapshot_download from transformers import pipeline load_dotenv() # Audio preprocessing available with required dependencies PREPROCESSING_AVAILABLE = True DEFAULT_TEXT_POSTPROCESS_MODEL = "google/medgemma-4b-it" TEXT_POSTPROCESS_PROMPT = ( "Agisci come assistente editoriale clinico. Prendi la trascrizione fornita, correggi" " eventuali errori di riconoscimento automatico e migliora la grammatica mantenendo" " il significato. Anonimizza inoltre il testo sostituendo nomi propri di persone con" " segnaposto [PAZIENTE] o [MEDICO] a seconda del ruolo implicato. Non inventare" " informazioni nuove, non tradurre. Restituisci solo la versione finale pulita" " e pseudonimizzata in italiano, senza preamboli né spiegazioni." "\nEsempio 1 - Input: 'Buongiorno dottor Rossi, sono Maria Bianchi e ho prenotato l'holter.'" "\nEsempio 1 - Output: 'Buongiorno [MEDICO], sono [PAZIENTE] e ho prenotato l'Holter.'" "\nEsempio 2 - Input: 'Il paziente Claudio Caletti riferisce che la dottoressa Neri gli ha prescritto Coumadin.'" "\nEsempio 2 - Output: '[PAZIENTE] riferisce che [MEDICO] gli ha prescritto Coumadin.'" "\nEsempio 3 - Input: 'Dott.ssa Gallo, ho parlato con la collega Francesca e confermiamo l'intervento.'" "\nEsempio 3 - Output: '[MEDICO], ho parlato con [MEDICO] e confermiamo l'intervento.'" "\nTesto originale:\n" ) # Shared caches to keep models/pipelines in memory across requests PIPELINE_CACHE: Dict[Tuple[str, str, str], Tuple[Any, str, str]] = {} PIPELINE_CACHE_LOCK = threading.Lock() MODEL_PATH_CACHE: Dict[str, str] = {} MODEL_PATH_CACHE_LOCK = threading.Lock() TEXT_POSTPROCESS_PIPELINE: Optional[Any] = None TEXT_POSTPROCESS_MODEL_ID: Optional[str] = None TEXT_POSTPROCESS_PIPELINE_LOCK = threading.Lock() def get_env_or_secret(key: str, default: Optional[str] = None) -> Optional[str]: """Get environment variable or default.""" return os.environ.get(key, default) @dataclass class InferenceMetrics: """Track inference performance metrics.""" processing_time: float memory_usage: float device_used: str dtype_used: str model_size_mb: Optional[float] = None @dataclass class PreprocessingConfig: """Configuration for audio preprocessing pipeline.""" normalize_format: bool = True normalize_volume: bool = True reduce_noise: bool = True remove_silence: bool = True def ensure_local_model(model_id: str, hf_token: Optional[str] = None) -> str: """Ensure a model snapshot is available locally and return its path.""" if os.path.isdir(model_id): return model_id with MODEL_PATH_CACHE_LOCK: cached_path = MODEL_PATH_CACHE.get(model_id) if cached_path and os.path.isdir(cached_path): return cached_path logger = logging.getLogger(__name__) cache_root = get_env_or_secret("HF_MODEL_CACHE_DIR") if not cache_root: cache_root = os.path.join(os.path.dirname(__file__), "hf_models") os.makedirs(cache_root, exist_ok=True) local_dir = os.path.join(cache_root, model_id.replace("/", "__")) try: downloaded_path = snapshot_download( repo_id=model_id, token=hf_token, local_dir=local_dir, local_dir_use_symlinks=False, resume_download=True, ) target_path = downloaded_path # snapshot_download may return the parent folder when local_dir is provided. # If we don't see config files at that level, look for the latest snapshot dir. config_path = os.path.join(target_path, "config.json") if not os.path.isfile(config_path): snapshots_dir = os.path.join(target_path, "snapshots") if os.path.isdir(snapshots_dir): snapshot_candidates = sorted( ( os.path.join(snapshots_dir, name) for name in os.listdir(snapshots_dir) if os.path.isdir(os.path.join(snapshots_dir, name)) ), key=os.path.getmtime, reverse=True, ) for candidate in snapshot_candidates: if os.path.isfile(os.path.join(candidate, "config.json")): target_path = candidate break downloaded_path = target_path except Exception as download_error: # If download fails but we already have weights, continue with local copy if os.path.isdir(local_dir) and os.listdir(local_dir): logger.warning( "Unable to refresh model %s from hub (%s), using existing files", model_id, download_error, ) # Try to use the most recent snapshot that exists locally. snapshots_dir = os.path.join(local_dir, "snapshots") if os.path.isdir(snapshots_dir): snapshot_candidates = sorted( ( os.path.join(snapshots_dir, name) for name in os.listdir(snapshots_dir) if os.path.isdir(os.path.join(snapshots_dir, name)) ), key=os.path.getmtime, reverse=True, ) for candidate in snapshot_candidates: if os.path.isfile(os.path.join(candidate, "config.json")): downloaded_path = candidate break else: raise with MODEL_PATH_CACHE_LOCK: MODEL_PATH_CACHE[model_id] = downloaded_path return downloaded_path def warm_model_cache() -> None: """Ensure the configured models are ready on disk.""" logger = logging.getLogger(__name__) model_id = get_env_or_secret("HF_MODEL_ID", "ReportAId/whisper-medium-it-finetuned") base_model_id = get_env_or_secret("BASE_WHISPER_MODEL_ID", "openai/whisper-medium") hf_token = get_env_or_secret("HF_TOKEN") or get_env_or_secret( "HUGGINGFACEHUB_API_TOKEN" ) models_to_check: List[Tuple[str, str]] = [] if base_model_id: models_to_check.append((base_model_id, "base")) if model_id and model_id != base_model_id: models_to_check.append((model_id, "fine-tuned")) text_postprocess_enabled = get_env_or_secret( "TEXT_POSTPROCESS_ENABLED", "false" ).lower() in { "1", "true", "yes", } text_model_id = get_env_or_secret( "TEXT_POSTPROCESS_MODEL_ID", DEFAULT_TEXT_POSTPROCESS_MODEL ) if text_postprocess_enabled and text_model_id: models_to_check.append((text_model_id, "text-postprocess")) for model_name, label in models_to_check: try: logger.info("Verifying %s model cache for %s", label, model_name) local_path = ensure_local_model(model_name, hf_token=hf_token) logger.info("Model %s ready at %s", model_name, local_path) except Exception: logger.exception("Failed to prepare model %s", model_name) raise def normalize_audio(audio_bytes: bytes) -> bytes: """ Converte un chunk audio in bytes nel formato standard per Whisper. (16kHz, mono, WAV PCM) """ # Carica i bytes in pydub usando un file in memoria (BytesIO) audio_segment = AudioSegment.from_file(io.BytesIO(audio_bytes)) # 1. Imposta la frequenza di campionamento a 16kHz audio_segment = audio_segment.set_frame_rate(16000) # 2. Converte in mono audio_segment = audio_segment.set_channels(1) # 3. Assicura che il campione sia a 2 bytes (16-bit), standard per WAV audio_segment = audio_segment.set_sample_width(2) # Esporta i bytes processati in formato WAV buffer = io.BytesIO() audio_segment.export(buffer, format="wav") return buffer.getvalue() def normalize_volume(audio_bytes: bytes) -> bytes: """ Normalizza il volume di un chunk audio WAV. """ # Carica l'audio audio_segment = AudioSegment.from_wav(io.BytesIO(audio_bytes)) # Normalizza l'audio. Porta il picco massimo a -1.0 dBFS # Il valore di headroom è una buona pratica per evitare clipping normalized_segment = audio_segment.normalize(headroom=0.1) buffer = io.BytesIO() normalized_segment.export(buffer, format="wav") return buffer.getvalue() def reduce_background_noise(audio_bytes: bytes) -> bytes: """ Riduce il rumore di fondo da un chunk audio WAV. """ # Leggi i dati audio dai bytes buffer_read = io.BytesIO(audio_bytes) rate, data = sf.read(buffer_read) # Assicura che l'audio sia mono per la riduzione if data.ndim > 1: data = np.mean(data, axis=1) # Esegui la riduzione del rumore reduced_noise_data = noisereduce.reduce_noise(y=data, sr=rate) # Scrivi i dati processati in un nuovo buffer di bytes buffer_write = io.BytesIO() sf.write(buffer_write, reduced_noise_data, rate, format="wav") return buffer_write.getvalue() def remove_silence(audio_bytes: bytes) -> bytes: """ Rimuove i segmenti di silenzio da un chunk audio in formato WAV. """ audio_segment = AudioSegment.from_wav(io.BytesIO(audio_bytes)) chunks = split_on_silence( audio_segment, min_silence_len=100, silence_thresh=-35, keep_silence=80, # Mantiene un piccolo silenzio tra i chunk ) if not chunks: # Se non trova parlato, restituisce bytes vuoti return b"" # Unisce di nuovo i chunk in un unico segmento processed_segment = sum(chunks, AudioSegment.empty()) buffer = io.BytesIO() processed_segment.export(buffer, format="wav") return buffer.getvalue() def preprocess_audio_pipeline(audio_path: str) -> str: """ Applica la pipeline completa di preprocessing audio. Restituisce il path del file audio preprocessato. """ logger = logging.getLogger(__name__) logger.info("Avvio pipeline di preprocessing audio") try: # Leggi il file audio originale with open(audio_path, "rb") as f: audio_bytes = f.read() # Applica tutte le fasi di preprocessing in sequenza logger.info("1. Normalizzazione formato audio...") audio_bytes = normalize_audio(audio_bytes) logger.info("2. Normalizzazione volume...") audio_bytes = normalize_volume(audio_bytes) logger.info("3. Riduzione rumore di fondo...") audio_bytes = reduce_background_noise(audio_bytes) logger.info("4. Rimozione silenzi...") audio_bytes = remove_silence(audio_bytes) # Se l'audio è vuoto dopo la rimozione del silenzio, usa l'audio originale if not audio_bytes: logger.warning( "Audio vuoto dopo rimozione silenzi, utilizzo audio originale" ) with open(audio_path, "rb") as f: audio_bytes = f.read() # Applica solo normalizzazione formato e volume audio_bytes = normalize_audio(audio_bytes) audio_bytes = normalize_volume(audio_bytes) # Salva l'audio preprocessato in un file temporaneo with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file: temp_file.write(audio_bytes) preprocessed_path = temp_file.name logger.info(f"Preprocessing completato: {preprocessed_path}") return preprocessed_path except Exception as e: logger.error(f"Errore durante preprocessing: {e}") logger.info("Utilizzo audio originale senza preprocessing") return audio_path def load_asr_pipeline( model_id: str, base_model_id: str, device_pref: str = "auto", hf_token: Optional[str] = None, dtype_pref: str = "auto", chunk_length_s: Optional[int] = None, return_timestamps: bool = False, ): logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) logger.info(f"Loading ASR pipeline for model: {model_id}") logger.info( f"Device preference: {device_pref}, Token provided: {hf_token is not None}" ) import torch from transformers import pipeline # Pick optimal device for inference device_str = "cpu" if device_pref == "auto": if torch.cuda.is_available(): device_str = "cuda" logger.info(f"Using CUDA: {torch.cuda.get_device_name()}") elif getattr(torch.backends, "mps", None) and torch.backends.mps.is_available(): device_str = "mps" logger.info("Using Apple Silicon MPS for inference") else: device_str = "cpu" logger.info("Using CPU for inference") else: device_str = device_pref # Pick dtype - optimized for inference performance dtype = None if dtype_pref == "auto": # For whisper-medium models, use float32 for stability in medical transcription if "whisper-medium" in model_id: dtype = torch.float32 logger.info( f"Using float32 for {model_id} (medical transcription stability)" ) elif device_str == "cuda": dtype = torch.float16 # Use half precision on GPU for speed logger.info("Using float16 on CUDA for faster inference") else: dtype = torch.float32 else: dtype = {"float32": torch.float32, "float16": torch.float16}.get( dtype_pref, torch.float32 ) logger.info("Pipeline configuration:") logger.info(f" Model: {model_id}") logger.info(f" Base model: {base_model_id}") logger.info(f" Dtype: {dtype}") logger.info(f" Device: {device_str}") logger.info(f" Chunk length: {chunk_length_s}s") logger.info(f" Return timestamps: {return_timestamps}") dtype_name = str(dtype).replace("torch.", "") if dtype is not None else "auto" cache_key = (model_id, device_str, dtype_name) with PIPELINE_CACHE_LOCK: cached_pipeline = PIPELINE_CACHE.get(cache_key) if cached_pipeline: logger.info( "Reusing cached pipeline for %s on %s (%s)", model_id, device_str, dtype_name, ) return cached_pipeline model_source = ensure_local_model(model_id, hf_token=hf_token) logger.info(f"Using local model files from: {model_source}") device_argument: Any = 0 if device_str == "cuda" else device_str pipeline_kwargs = { "task": "automatic-speech-recognition", "device": device_argument, } if dtype is not None: pipeline_kwargs["torch_dtype"] = dtype # Use ultra-simplified approach to avoid all compatibility issues def build_pipeline_with_recovery(model_path: str, kwargs: Dict[str, Any]) -> Any: try: return pipeline(**{**kwargs, "model": model_path}) except Exception as build_error: logger.error( "Failed to load pipeline for %s from %s: %s", model_id, model_path, build_error, ) raise try: logger.info( "Setting up ultra-simplified pipeline to avoid forced_decoder_ids conflicts..." ) asr = build_pipeline_with_recovery(model_source, pipeline_kwargs) # Post-loading cleanup to remove any forced_decoder_ids if hasattr(asr.model, "generation_config") and hasattr( asr.model.generation_config, "forced_decoder_ids" ): logger.info("Removing forced_decoder_ids from model generation config") asr.model.generation_config.forced_decoder_ids = None if chunk_length_s: logger.info(f"Setting chunk_length_s to {chunk_length_s}") final_device = device_str final_dtype = dtype final_dtype_name = dtype_name logger.info(f"Successfully created ultra-simplified pipeline for: {model_id}") except Exception as e: logger.error(f"Ultra-simplified pipeline creation failed: {e}") logger.info("Falling back to absolute minimal settings...") fallback_device = "cpu" fallback_dtype = torch.float32 fallback_dtype_name = str(fallback_dtype).replace("torch.", "") fallback_key = (model_id, fallback_device, fallback_dtype_name) with PIPELINE_CACHE_LOCK: cached_pipeline = PIPELINE_CACHE.get(fallback_key) if cached_pipeline: logger.info( "Reusing cached fallback pipeline for %s (%s)", model_id, fallback_dtype_name, ) return cached_pipeline try: fallback_kwargs = { "task": "automatic-speech-recognition", "device": fallback_device, "torch_dtype": fallback_dtype, } asr = build_pipeline_with_recovery(model_source, fallback_kwargs) if hasattr(asr.model, "generation_config") and hasattr( asr.model.generation_config, "forced_decoder_ids" ): logger.info("Removing forced_decoder_ids from fallback model") asr.model.generation_config.forced_decoder_ids = None final_device = fallback_device final_dtype = fallback_dtype final_dtype_name = fallback_dtype_name logger.info( f"Minimal fallback pipeline created with dtype: {fallback_dtype}" ) except Exception as fallback_error: logger.error(f"Minimal fallback failed: {fallback_error}") raise cache_key = (model_id, final_device, final_dtype_name) with PIPELINE_CACHE_LOCK: PIPELINE_CACHE[cache_key] = (asr, final_device, final_dtype_name) return asr, final_device, final_dtype_name def get_text_postprocess_pipeline( model_id: str, device_pref: Optional[str], hf_token: Optional[str], ) -> Any: """Load a minimal text-generation pipeline for post-processing.""" logger = logging.getLogger(__name__) if not model_id: raise ValueError("Model id for text post-processing is not configured") normalized_device_pref = (device_pref or "auto").lower() if normalized_device_pref == "auto": if torch.cuda.is_available(): device_choice = "cuda" elif getattr(torch.backends, "mps", None) and torch.backends.mps.is_available(): device_choice = "mps" else: device_choice = "cpu" else: device_choice = normalized_device_pref device_argument: Any dtype: Optional[torch.dtype] = None if device_choice.startswith("cuda") and torch.cuda.is_available(): device_argument = device_choice dtype = torch.bfloat16 elif ( device_choice == "mps" and getattr(torch.backends, "mps", None) and torch.backends.mps.is_available() ): device_argument = "mps" dtype = torch.float16 else: device_argument = "cpu" dtype = None global TEXT_POSTPROCESS_PIPELINE, TEXT_POSTPROCESS_MODEL_ID with TEXT_POSTPROCESS_PIPELINE_LOCK: if ( TEXT_POSTPROCESS_PIPELINE is not None and TEXT_POSTPROCESS_MODEL_ID == model_id ): return TEXT_POSTPROCESS_PIPELINE model_source = ensure_local_model(model_id, hf_token=hf_token) is_medgemma = "medgemma" in model_id.lower() if is_medgemma: pipe_kwargs: Dict[str, Any] = { "task": "image-text-to-text", "model": model_source, "device": device_argument, } if dtype is not None: pipe_kwargs["torch_dtype"] = dtype else: pipe_kwargs = { "task": "text-generation", "model": model_source, "device": device_argument, "tokenizer": model_source, } if dtype is not None: pipe_kwargs["torch_dtype"] = dtype if device_argument != "cpu": pipe_kwargs["device_map"] = "auto" logger.info( "Loading postprocess pipeline for %s with device=%s, dtype=%s", model_id, device_argument, str(dtype) if dtype is not None else "auto", ) try: postprocess_pipe = pipeline(**pipe_kwargs) except Exception as primary_error: logger.warning( "Postprocess pipeline init failed on %s (%s). Falling back to CPU.", device_argument, primary_error, ) pipe_kwargs["device"] = "cpu" pipe_kwargs.pop("torch_dtype", None) pipe_kwargs.pop("device_map", None) postprocess_pipe = pipeline(**pipe_kwargs) TEXT_POSTPROCESS_PIPELINE = postprocess_pipe TEXT_POSTPROCESS_MODEL_ID = model_id return postprocess_pipe def postprocess_transcription_text( text: str, context_label: str, ) -> str: """Run MedGemma post-processing to clean transcription text.""" if not text or not text.strip(): return text logger = logging.getLogger(__name__) text_postprocess_enabled = get_env_or_secret( "TEXT_POSTPROCESS_ENABLED", "false" ).lower() in { "1", "true", "yes", } if not text_postprocess_enabled: logger.debug( "Text post-processing skipped for %s: feature disabled", context_label, ) return text model_id = get_env_or_secret( "TEXT_POSTPROCESS_MODEL_ID", DEFAULT_TEXT_POSTPROCESS_MODEL ) if not model_id: logger.info("Text post-processing disabled: no model configured") return text hf_token = get_env_or_secret("TEXT_POSTPROCESS_HF_TOKEN") or get_env_or_secret( "HF_TOKEN" ) device_pref = get_env_or_secret("TEXT_POSTPROCESS_DEVICE", "auto") max_new_tokens = int(get_env_or_secret("TEXT_POSTPROCESS_MAX_NEW", "200")) prompt_body = text.strip() prompt = f"{TEXT_POSTPROCESS_PROMPT}{prompt_body}\nRisultato:" is_medgemma = "medgemma" in model_id.lower() try: postprocess_pipe = get_text_postprocess_pipeline( model_id=model_id, device_pref=device_pref, hf_token=hf_token, ) if is_medgemma: system_prompt, separator, _ = TEXT_POSTPROCESS_PROMPT.partition( "\nTesto originale:\n" ) if not separator: system_prompt = TEXT_POSTPROCESS_PROMPT user_prefix = "" else: user_prefix = "Testo originale:\n" system_prompt = system_prompt.strip() messages = [ { "role": "system", "content": [{"type": "text", "text": system_prompt.strip()}], }, { "role": "user", "content": [ { "type": "text", "text": f"{user_prefix}{prompt_body}\nRisultato:", } ], }, ] outputs = postprocess_pipe( text=messages, max_new_tokens=max_new_tokens, ) generated_text = "" if isinstance(outputs, list) and outputs: first = outputs[0] if isinstance(first, dict): generated = first.get("generated_text") if isinstance(generated, list): # Prefer the latest assistant-like turn for msg in reversed(generated): if not isinstance(msg, dict): continue role = msg.get("role") if role not in {"assistant", "model", None}: continue content = msg.get("content") if isinstance(content, list): for block in content: if ( isinstance(block, dict) and block.get("type") == "text" ): text_block = (block.get("text") or "").strip() if text_block: generated_text = text_block break if generated_text: break elif isinstance(content, str) and content.strip(): generated_text = content.strip() break if not generated_text: # Fallback: use the last text block regardless of role for msg in reversed(generated): if not isinstance(msg, dict): continue content = msg.get("content") if isinstance(content, list): for block in content: if ( isinstance(block, dict) and block.get("type") == "text" and block.get("text") ): generated_text = block["text"].strip() break if generated_text: break elif isinstance(content, str) and content.strip(): generated_text = content.strip() break elif isinstance(generated, str): generated_text = generated.strip() elif isinstance(outputs, dict): generated = outputs.get("generated_text") if isinstance(generated, list): for msg in reversed(generated): if isinstance(msg, dict): text_block = msg.get("text") or msg.get("content") or "" if isinstance(text_block, str) and text_block.strip(): generated_text = text_block.strip() break elif isinstance(generated, str): generated_text = generated.strip() cleaned = generated_text else: outputs = postprocess_pipe( prompt, max_new_tokens=max_new_tokens, do_sample=False, return_full_text=False, ) generated_text = "" if isinstance(outputs, list) and outputs: first = outputs[0] if isinstance(first, dict): candidate = first.get("generated_text") or first.get("text") if isinstance(candidate, str): generated_text = candidate elif isinstance(candidate, list): generated_text = " ".join( part for part in candidate if isinstance(part, str) ) elif isinstance(first, str): generated_text = first elif isinstance(outputs, dict): candidate = outputs.get("generated_text") or outputs.get("text") if isinstance(candidate, str): generated_text = candidate elif isinstance(outputs, str): generated_text = outputs generated_text = (generated_text or "").strip() if generated_text.startswith(prompt): cleaned = generated_text[len(prompt) :].strip() else: cleaned = generated_text if cleaned: if cleaned.startswith(prompt_body): cleaned = cleaned[len(prompt_body) :].strip() if cleaned.startswith("Risultato:"): cleaned = cleaned[len("Risultato:") :].strip() if cleaned.lower().startswith("risultato:"): cleaned = cleaned[len("risultato:") :].strip() logger.debug("Post-processing successful for %s", context_label) return cleaned or text logger.warning("Post-processing returned empty output for %s", context_label) return text except Exception as exc: logger.warning( "Text post-processing failed for %s with model %s: %s", context_label, model_id, exc, ) return text @contextmanager def memory_monitor(): """Context manager to monitor memory usage during inference.""" process = psutil.Process() start_memory = process.memory_info().rss / 1024 / 1024 # MB yield end_memory = process.memory_info().rss / 1024 / 1024 # MB return end_memory - start_memory def transcribe_local( audio_path: str, model_id: str, base_model_id: str, language: Optional[str], task: str, device_pref: str, dtype_pref: str, hf_token: Optional[str], chunk_length_s: Optional[int], stride_length_s: Optional[int], return_timestamps: bool, ) -> Dict[str, Any]: logger = logging.getLogger(__name__) logger.info(f"Starting transcription: {os.path.basename(audio_path)}") logger.info(f"Model: {model_id}") # Validate audio_path if audio_path is None: raise ValueError("Audio path is None") if not isinstance(audio_path, (str, bytes, os.PathLike)): raise TypeError( f"Audio path must be str, bytes or os.PathLike, got {type(audio_path)}" ) if not os.path.exists(audio_path): raise FileNotFoundError(f"Audio file not found: {audio_path}") # Apply audio preprocessing pipeline preprocessed_audio_path = audio_path if PREPROCESSING_AVAILABLE: try: logger.info("Applicazione preprocessing audio...") preprocessed_audio_path = preprocess_audio_pipeline(audio_path) logger.info( f"Preprocessing completato. File processato: {os.path.basename(preprocessed_audio_path)}" ) except Exception as e: logger.warning( f"Errore durante preprocessing, utilizzo audio originale: {e}" ) preprocessed_audio_path = audio_path else: logger.info("Preprocessing audio non disponibile, utilizzo audio originale") # Load ASR pipeline with performance monitoring start_time = time.time() asr, device_str, dtype_str = load_asr_pipeline( model_id=model_id, base_model_id=base_model_id, device_pref=device_pref, hf_token=hf_token, dtype_pref=dtype_pref, chunk_length_s=chunk_length_s, return_timestamps=return_timestamps, ) load_time = time.time() - start_time logger.info(f"Model loaded in {load_time:.2f}s") # Simplified configuration to avoid compatibility issues # Let the pipeline handle generation parameters internally logger.info("Using simplified configuration to avoid model compatibility issues") # Setup inference parameters with performance monitoring try: # Start with minimal parameters to avoid conflicts asr_kwargs = {} # Only add parameters that are safe and supported if return_timestamps: asr_kwargs["return_timestamps"] = return_timestamps logger.info("Timestamps enabled") # Apply chunking strategy only if supported if chunk_length_s: try: asr_kwargs["chunk_length_s"] = chunk_length_s logger.info(f"Using chunking strategy: {chunk_length_s}s") except Exception as chunk_error: logger.warning(f"Chunking not supported: {chunk_error}") if stride_length_s is not None: try: asr_kwargs["stride_length_s"] = stride_length_s logger.info(f"Using stride: {stride_length_s}s") except Exception as stride_error: logger.warning(f"Stride not supported: {stride_error}") # Force language/task selection for Whisper to avoid auto-detect glitches generate_kwargs: Dict[str, Any] = {} if language: generate_kwargs["language"] = language logger.info(f"Forcing ASR language: {language}") if task: generate_kwargs["task"] = task logger.info(f"Forcing ASR task: {task}") if generate_kwargs: asr_kwargs["generate_kwargs"] = generate_kwargs logger.info(f"Inference parameters configured: {list(asr_kwargs.keys())}") # Run inference with performance monitoring inference_start = time.time() memory_before = psutil.Process().memory_info().rss / 1024 / 1024 # MB try: # Primary inference attempt with safe parameters if asr_kwargs: result = asr(preprocessed_audio_path, **asr_kwargs) else: # Fallback to no parameters if all failed result = asr(preprocessed_audio_path) inference_time = time.time() - inference_start memory_after = psutil.Process().memory_info().rss / 1024 / 1024 # MB memory_used = memory_after - memory_before logger.info(f"Inference completed successfully in {inference_time:.2f}s") logger.info(f"Memory used: {memory_used:.1f}MB") except Exception as e: error_msg = str(e) logger.warning(f"Inference failed with parameters: {error_msg}") # Try with absolutely minimal parameters if "forced_decoder_ids" in error_msg: logger.info( "Detected forced_decoder_ids error, trying with no parameters..." ) elif ( "probability tensor contains either inf, nan or element < 0" in error_msg ): logger.info( "Detected numerical instability, trying with no parameters..." ) else: logger.info("Unknown error, trying with no parameters...") try: inference_start = time.time() result = asr(preprocessed_audio_path) # No parameters at all inference_time = time.time() - inference_start memory_used = 0 # Reset memory tracking logger.info(f"Minimal inference completed in {inference_time:.2f}s") except Exception as final_error: logger.error(f"All inference attempts failed: {final_error}") raise except Exception as e: logger.error(f"Inference failed: {e}") raise # Cleanup GPU memory after inference if device_str == "cuda": torch.cuda.empty_cache() gc.collect() # Cleanup temporary preprocessed file if it was created if preprocessed_audio_path != audio_path: try: os.unlink(preprocessed_audio_path) logger.info("File audio preprocessato temporaneo rimosso") except Exception as e: logger.warning(f"Errore rimozione file temporaneo: {e}") # Return results with performance metrics meta = { "device": device_str, "dtype": dtype_str, "inference_time": inference_time, "memory_used_mb": memory_used, "model_type": "original" if model_id == base_model_id else "fine-tuned", "preprocessing_applied": preprocessed_audio_path != audio_path, } return {"result": result, "meta": meta} def handle_whisper_problematic_output(text: str, model_name: str = "Whisper") -> dict: """Gestisce gli output problematici di Whisper come '!', '.', stringhe vuote, ecc.""" if not text: return { "text": "[WHISPER ISSUE: Output vuoto - Audio troppo corto o silenzioso]", "is_problematic": True, "original": text, "issue_type": "empty", } text_stripped = text.strip() # Casi problematici comuni problematic_outputs = { "!": "Audio troppo corto/silenzioso", ".": "Audio di bassa qualità", "?": "Audio incomprensibile", "...": "Audio troppo lungo senza parlato", "--": "Audio distorto", "—": "Audio con troppo rumore", " per!": "Audio parzialmente comprensibile", "per!": "Audio parzialmente comprensibile", } if text_stripped in problematic_outputs: return { "text": f"[WHISPER ISSUE: '{text_stripped}' - {problematic_outputs[text_stripped]}]", "is_problematic": True, "original": text, "issue_type": text_stripped, "suggestion": problematic_outputs[text_stripped], } # Testo troppo corto (meno di 3 caratteri e non alfabetico) if len(text_stripped) <= 2 and not text_stripped.isalpha(): return { "text": f"[WHISPER ISSUE: '{text_stripped}' - Output troppo corto/simbolico]", "is_problematic": True, "original": text, "issue_type": "short_symbolic", } return {"text": text, "is_problematic": False, "original": text} def transcribe_comparison(audio_file): """Main function for Gradio interface.""" if audio_file is None: warning = "❌ Nessun file audio fornito" return warning, warning, warning # Model configuration model_id = get_env_or_secret("HF_MODEL_ID") base_model_id = get_env_or_secret("BASE_WHISPER_MODEL_ID") hf_token = get_env_or_secret("HF_TOKEN") or get_env_or_secret( "HUGGINGFACEHUB_API_TOKEN" ) if not model_id or not base_model_id: error_msg = "❌ Modelli non configurati. Impostare HF_MODEL_ID e BASE_WHISPER_MODEL_ID nelle variabili d'ambiente" return error_msg, error_msg, error_msg # Preprocessing sempre attivo: normalizzazione formato, volume, riduzione rumore, rimozione silenzi # Viene applicato automaticamente prima della trascrizione con entrambi i modelli # Fixed settings optimized for medical transcription language = "it" # Always Italian for ReportAId task = "transcribe" return_ts = True # Timestamps for medical report segments device_pref = "auto" # Auto-detect best device dtype_pref = "auto" # Auto-select optimal precision chunk_len = 7 # 7-second chunks for better context stride_len = 1 # Minimal stride for accuracy try: # Use the audio file path directly from Gradio tmp_path = audio_file original_result = None finetuned_result = None original_text = "" finetuned_text = "" postprocessed_text = "" try: # Transcribe with original model original_result = transcribe_local( audio_path=tmp_path, model_id=base_model_id, base_model_id=base_model_id, language=language, task=task, device_pref=device_pref, dtype_pref=dtype_pref, hf_token=None, # Base model doesn't need token chunk_length_s=int(chunk_len) if chunk_len else None, stride_length_s=int(stride_len) if stride_len else None, return_timestamps=return_ts, ) # Extract text from result if isinstance(original_result["result"], dict): original_text = original_result["result"].get( "text" ) or original_result["result"].get("transcription") elif isinstance(original_result["result"], str): original_text = original_result["result"] if original_text: result = handle_whisper_problematic_output( original_text, "Original Whisper" ) if result["is_problematic"]: original_text = f"⚠️ {result['text']}\n\n💡 Suggerimenti:\n• Registra almeno 5-10 secondi di audio\n• Parla chiaramente e ad alto volume\n• Avvicinati al microfono\n• Evita rumori di fondo" else: original_text = result["text"] else: original_text = "❌ Nessun testo restituito dal modello originale" except Exception as e: original_text = f"❌ Errore modello originale: {str(e)}" try: # Transcribe with fine-tuned model finetuned_result = transcribe_local( audio_path=tmp_path, model_id=model_id, base_model_id=base_model_id, language=language, task=task, device_pref=device_pref, dtype_pref=dtype_pref, hf_token=hf_token or None, chunk_length_s=int(chunk_len) if chunk_len else None, stride_length_s=int(stride_len) if stride_len else None, return_timestamps=return_ts, ) # Extract text from result if isinstance(finetuned_result["result"], dict): finetuned_text = finetuned_result["result"].get( "text" ) or finetuned_result["result"].get("transcription") elif isinstance(finetuned_result["result"], str): finetuned_text = finetuned_result["result"] if finetuned_text: result = handle_whisper_problematic_output( finetuned_text, "Fine-tuned Model" ) if result["is_problematic"]: finetuned_text = f"⚠️ {result['text']}\n\n💡 Suggerimenti:\n• Registra almeno 5-10 secondi di audio\n• Parla chiaramente e ad alto volume\n• Avvicinati al microfono\n• Evita rumori di fondo" else: finetuned_text = result["text"] else: finetuned_text = "❌ Nessun testo restituito dal modello fine-tuned" except Exception as e: finetuned_text = f"❌ Errore modello fine-tuned: {str(e)}" postprocessed_text = finetuned_text or "" # GPU memory cleanup if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() return original_text, finetuned_text, postprocessed_text except Exception as e: error_msg = f"❌ Errore generale: {str(e)}" return error_msg, error_msg, error_msg # Gradio interface def create_interface(): """Create and configure the Gradio interface.""" warm_model_cache() model_id = get_env_or_secret("HF_MODEL_ID", "ReportAId/whisper-medium-it-finetuned") base_model_id = get_env_or_secret("BASE_WHISPER_MODEL_ID", "openai/whisper-medium") # Carica i loghi chiaro/scuro inline e alterna in base al tema preferito logo_html = None try: assets_dir = os.path.join(os.path.dirname(__file__), "assets") light_path = os.path.join(assets_dir, "RaidLight.svg") dark_path = os.path.join(assets_dir, "RaidDark.svg") with open(light_path, "r", encoding="utf-8") as f: light_svg = f.read() with open(dark_path, "r", encoding="utf-8") as f: dark_svg = f.read() logo_html = f"""
{light_svg}
{dark_svg}
ReportAId
""" except Exception: # Fallback: immagini servite dal path file= con switch CSS logo_html = """
\"ReportAId\" \"ReportAId\" ReportAId
""" with gr.Blocks( title="Medical Transcription", theme=gr.themes.Default(primary_hue="blue"), css=".gradio-container{max-width: 900px !important; margin: 0 auto !important;} .center-col{display:flex;flex-direction:column;align-items:center;} .center-col .wrap{width:100%;}", ) as demo: # Header con logo ReportAId (semplice, bianco/nero) gr.HTML(logo_html) gr.Markdown(""" Questa demo confronta MedWhisper Large ITA con Whisper Large v3 Turbo su parlato clinico in italiano. MedWhisper è una variante domain-adapted (LoRA) del modello base, addestrata su registrazioni sintetiche ricche di gergo medico, acronimi e formule ricorrenti. Carica o registra audio per ottenere trascrizioni affiancate; noterai una resa migliore della terminologia specialistica (es. “Holter delle 24 ore”, “fibrillazione atriale”). Sul nostro held-out clinico, la WER scende dal 7,9% al 4,5% rispetto al checkpoint base. Riferimento al MedWhisper: https://huggingface.co/ReportAId/medwhisper-large-v3-ita """) with gr.Row(): with gr.Column(): gr.Markdown(f""" **⚙️ Impostazioni** - Modello originale: `{base_model_id}` - Modello fine-tuned: `{model_id}` - Lingua: Italiano (it) - Preprocessing audio: **ATTIVO** (normalizzazione, riduzione rumore, rimozione silenzi) """) gr.Markdown("---") # Titolo sezione input gr.Markdown("## Input") # Audio input e pulsante allineati a sinistra audio_input = gr.Audio( label="📥 Registra dal microfono o carica un file", type="filepath", sources=["microphone", "upload"], format="wav", streaming=False, interactive=True, ) transcribe_btn = gr.Button("🚀 Trascrivi e Confronta", variant="primary") gr.Markdown("---") gr.Markdown("## Output") with gr.Row(): with gr.Column(): gr.Markdown("### Modello base (Whisper V3)") original_output = gr.Textbox( label="Transcription", lines=12, interactive=False, show_copy_button=True, ) with gr.Column(): gr.Markdown("### Modello fine-tuned ReportAId") finetuned_output = gr.Textbox( label="Transcription", lines=12, interactive=False, show_copy_button=True, ) # Post-processing disabilitato temporaneamente: manteniamo il widget ma nascosto medgemma_output = gr.Textbox( label="Testo finale", lines=12, interactive=False, show_copy_button=True, visible=False, ) # Click event transcribe_btn.click( fn=transcribe_comparison, inputs=[audio_input], outputs=[original_output, finetuned_output, medgemma_output], show_progress=True, ) return demo if __name__ == "__main__": # Configure logging logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) demo = create_interface() # Launch configuration for Hugging Face Spaces demo.launch( server_name="0.0.0.0", server_port=7860, share=False, show_error=True, inbrowser=False, quiet=False, )