First Commit.
Browse files- app.py +254 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from spacy import displacy
|
| 5 |
+
|
| 6 |
+
###########################
|
| 7 |
+
# Utility Function for Cleanup
|
| 8 |
+
###########################
|
| 9 |
+
def clean_and_group_entities(ner_results, min_score=0.40):
|
| 10 |
+
"""
|
| 11 |
+
Combines tokens for the same entity and filters out entities below the score threshold.
|
| 12 |
+
"""
|
| 13 |
+
grouped_entities = []
|
| 14 |
+
current_entity = None
|
| 15 |
+
|
| 16 |
+
for result in ner_results:
|
| 17 |
+
# Skip entities with a score below threshold
|
| 18 |
+
if result["score"] < min_score:
|
| 19 |
+
if current_entity:
|
| 20 |
+
# If the current entity meets threshold, add it
|
| 21 |
+
if current_entity["score"] >= min_score:
|
| 22 |
+
grouped_entities.append(current_entity)
|
| 23 |
+
current_entity = None
|
| 24 |
+
continue
|
| 25 |
+
|
| 26 |
+
# Remove any subword prefix "##"
|
| 27 |
+
word = result["word"].replace("##", "")
|
| 28 |
+
|
| 29 |
+
# Check if this result continues the current entity
|
| 30 |
+
if (current_entity
|
| 31 |
+
and result["entity_group"] == current_entity["entity_group"]
|
| 32 |
+
and result["start"] == current_entity["end"]):
|
| 33 |
+
|
| 34 |
+
# Update the current entity
|
| 35 |
+
current_entity["word"] += word
|
| 36 |
+
current_entity["end"] = result["end"]
|
| 37 |
+
# Keep the minimum score as the "weakest link"
|
| 38 |
+
current_entity["score"] = min(current_entity["score"], result["score"])
|
| 39 |
+
|
| 40 |
+
# If combined score now drops below threshold, discard the entity
|
| 41 |
+
if current_entity["score"] < min_score:
|
| 42 |
+
current_entity = None
|
| 43 |
+
else:
|
| 44 |
+
# Finalize the previous entity if valid
|
| 45 |
+
if current_entity and current_entity["score"] >= min_score:
|
| 46 |
+
grouped_entities.append(current_entity)
|
| 47 |
+
|
| 48 |
+
# Start a new entity
|
| 49 |
+
current_entity = {
|
| 50 |
+
"entity_group": result["entity_group"],
|
| 51 |
+
"word": word,
|
| 52 |
+
"start": result["start"],
|
| 53 |
+
"end": result["end"],
|
| 54 |
+
"score": result["score"]
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
# Add the last entity if it meets threshold
|
| 58 |
+
if current_entity and current_entity["score"] >= min_score:
|
| 59 |
+
grouped_entities.append(current_entity)
|
| 60 |
+
|
| 61 |
+
return grouped_entities
|
| 62 |
+
|
| 63 |
+
###########################
|
| 64 |
+
# Constants and Setup
|
| 65 |
+
###########################
|
| 66 |
+
MODELS = {
|
| 67 |
+
"ModernBERT Base": "disham993/electrical-ner-modernbert-base",
|
| 68 |
+
"BERT Base": "disham993/electrical-ner-bert-base",
|
| 69 |
+
"ModernBERT Large": "disham993/electrical-ner-modernbert-large",
|
| 70 |
+
"BERT Large": "disham993/electrical-ner-bert-large",
|
| 71 |
+
"DistilBERT Base": "disham993/electrical-ner-distilbert-base"
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
ENTITY_COLORS = {
|
| 75 |
+
"COMPONENT": "#FFB6C1",
|
| 76 |
+
"DESIGN_PARAM": "#98FB98",
|
| 77 |
+
"MATERIAL": "#DDA0DD",
|
| 78 |
+
"EQUIPMENT": "#87CEEB",
|
| 79 |
+
"TECHNOLOGY": "#F0E68C",
|
| 80 |
+
"SOFTWARE": "#FFD700",
|
| 81 |
+
"STANDARD": "#FFA07A",
|
| 82 |
+
"VENDOR": "#E6E6FA",
|
| 83 |
+
"PRODUCT": "#98FF98"
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
EXAMPLES = [
|
| 87 |
+
"Texas Instruments LM358 op-amp requires dual power supply.",
|
| 88 |
+
"Using a Multimeter, the technician measured the 10 kΞ© resistance of a Copper wire in the circuit.",
|
| 89 |
+
"To improve the reliability of the circuit, the engineer tested a 10k Ohm resistor with a multimeter from Fluke.",
|
| 90 |
+
"During the circuit design, we measured the current flow using a Fluke multimeter to ensure it was within the 10A specification."
|
| 91 |
+
]
|
| 92 |
+
|
| 93 |
+
@st.cache_resource
|
| 94 |
+
def load_model(model_name):
|
| 95 |
+
"""
|
| 96 |
+
Load and return a token classification pipeline with an aggregation strategy of 'simple'.
|
| 97 |
+
"""
|
| 98 |
+
try:
|
| 99 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 100 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
| 101 |
+
return pipeline(
|
| 102 |
+
"ner",
|
| 103 |
+
model=model,
|
| 104 |
+
tokenizer=tokenizer,
|
| 105 |
+
aggregation_strategy="simple" # <-- Aggregation strategy
|
| 106 |
+
)
|
| 107 |
+
except Exception as e:
|
| 108 |
+
st.error(f"Error loading model: {str(e)}")
|
| 109 |
+
return None
|
| 110 |
+
|
| 111 |
+
def get_base_entity_type(entity_label):
|
| 112 |
+
"""
|
| 113 |
+
Strips off 'B-' or 'I-' prefix if present.
|
| 114 |
+
"""
|
| 115 |
+
if entity_label.startswith("B-") or entity_label.startswith("I-"):
|
| 116 |
+
return entity_label[2:]
|
| 117 |
+
return entity_label
|
| 118 |
+
|
| 119 |
+
def create_displacy_data(text, entities):
|
| 120 |
+
"""
|
| 121 |
+
Create data for spaCy's displacy visualizer.
|
| 122 |
+
"""
|
| 123 |
+
ents = []
|
| 124 |
+
for entity in entities:
|
| 125 |
+
base_type = get_base_entity_type(entity["entity_group"])
|
| 126 |
+
ents.append({
|
| 127 |
+
"start": entity["start"],
|
| 128 |
+
"end": entity["end"],
|
| 129 |
+
"label": base_type
|
| 130 |
+
})
|
| 131 |
+
|
| 132 |
+
colors = {entity_type: color for entity_type, color in ENTITY_COLORS.items()}
|
| 133 |
+
options = {"ents": list(ENTITY_COLORS.keys()), "colors": colors}
|
| 134 |
+
|
| 135 |
+
doc_data = {
|
| 136 |
+
"text": text,
|
| 137 |
+
"ents": ents,
|
| 138 |
+
"title": None
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
# Render with manual mode = True
|
| 142 |
+
html_content = displacy.render(doc_data, style="ent", options=options, manual=True)
|
| 143 |
+
return html_content
|
| 144 |
+
|
| 145 |
+
###########################
|
| 146 |
+
# Main Streamlit App
|
| 147 |
+
###########################
|
| 148 |
+
def main():
|
| 149 |
+
st.set_page_config(page_title="Electrical Engineering NER", page_icon="β‘", layout="wide")
|
| 150 |
+
|
| 151 |
+
st.title("β‘ Electrical Engineering Named Entity Recognition")
|
| 152 |
+
st.markdown("""
|
| 153 |
+
This application identifies technical entities in electrical engineering text using a fine-tuned BERT model.
|
| 154 |
+
It can recognize components, parameters, materials, equipment, and more.
|
| 155 |
+
""")
|
| 156 |
+
|
| 157 |
+
# Sidebar - Model Selection
|
| 158 |
+
st.sidebar.title("Model Configuration")
|
| 159 |
+
selected_model_name = st.sidebar.selectbox(
|
| 160 |
+
"Select Model",
|
| 161 |
+
list(MODELS.keys()),
|
| 162 |
+
help="Choose which model to use for entity recognition"
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
with st.sidebar.expander("Model Details"):
|
| 166 |
+
st.write(f"**Model Path:** {MODELS[selected_model_name]}")
|
| 167 |
+
st.write("This model is fine-tuned specifically for the electrical engineering domain.")
|
| 168 |
+
|
| 169 |
+
# Confidence threshold
|
| 170 |
+
score_threshold = st.sidebar.slider(
|
| 171 |
+
'Minimum confidence threshold',
|
| 172 |
+
min_value=0.0,
|
| 173 |
+
max_value=1.0,
|
| 174 |
+
value=0.40,
|
| 175 |
+
step=0.01
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# Load selected model
|
| 179 |
+
model = load_model(MODELS[selected_model_name])
|
| 180 |
+
|
| 181 |
+
if model is None:
|
| 182 |
+
st.error("Failed to load model. Please try selecting a different model.")
|
| 183 |
+
return
|
| 184 |
+
|
| 185 |
+
# Create a form to collect user text and an Analyze button
|
| 186 |
+
with st.form(key="text_form"):
|
| 187 |
+
st.subheader("Try an example or enter your own text")
|
| 188 |
+
example_idx = st.selectbox(
|
| 189 |
+
"Select an example:",
|
| 190 |
+
range(len(EXAMPLES)),
|
| 191 |
+
format_func=lambda x: EXAMPLES[x][:100] + "..."
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
text_input = st.text_area(
|
| 195 |
+
"Enter text for analysis:",
|
| 196 |
+
value=EXAMPLES[example_idx],
|
| 197 |
+
height=100
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
# This button triggers form submission
|
| 201 |
+
submit_button = st.form_submit_button(label="Analyze")
|
| 202 |
+
|
| 203 |
+
# Only run inference after the user clicks "Analyze"
|
| 204 |
+
if submit_button and text_input.strip():
|
| 205 |
+
with st.spinner("Analyzing text..."):
|
| 206 |
+
try:
|
| 207 |
+
raw_entities = model(text_input)
|
| 208 |
+
cleaned_entities = clean_and_group_entities(raw_entities, min_score=score_threshold)
|
| 209 |
+
|
| 210 |
+
# Visualization
|
| 211 |
+
st.subheader("Identified Entities")
|
| 212 |
+
html_content = create_displacy_data(text_input, cleaned_entities)
|
| 213 |
+
st.markdown(html_content, unsafe_allow_html=True)
|
| 214 |
+
|
| 215 |
+
# Create DataFrame
|
| 216 |
+
if cleaned_entities:
|
| 217 |
+
df = pd.DataFrame(cleaned_entities).round({"score": 3})
|
| 218 |
+
|
| 219 |
+
df = df.rename(columns={
|
| 220 |
+
"entity_group": "Entity Type",
|
| 221 |
+
"word": "Text",
|
| 222 |
+
"score": "Confidence",
|
| 223 |
+
"start": "Start",
|
| 224 |
+
"end": "End"
|
| 225 |
+
})
|
| 226 |
+
|
| 227 |
+
st.subheader("Entity Details")
|
| 228 |
+
st.dataframe(df)
|
| 229 |
+
|
| 230 |
+
st.subheader("Entity Distribution")
|
| 231 |
+
entity_counts = df["Entity Type"].value_counts()
|
| 232 |
+
st.bar_chart(entity_counts)
|
| 233 |
+
else:
|
| 234 |
+
st.info("No entities detected in the text (or all below threshold).")
|
| 235 |
+
|
| 236 |
+
except Exception as e:
|
| 237 |
+
st.error(f"Error processing text: {str(e)}")
|
| 238 |
+
|
| 239 |
+
# Entity type legend
|
| 240 |
+
st.sidebar.title("Entity Types")
|
| 241 |
+
st.sidebar.markdown("""
|
| 242 |
+
- π§ **COMPONENT**: Circuit elements
|
| 243 |
+
- π **DESIGN_PARAM**: Values, measurements
|
| 244 |
+
- π§± **MATERIAL**: Physical materials
|
| 245 |
+
- π **EQUIPMENT**: Testing equipment
|
| 246 |
+
- π» **TECHNOLOGY**: Tech implementations
|
| 247 |
+
- πΎ **SOFTWARE**: Software tools
|
| 248 |
+
- π **STANDARD**: Technical standards
|
| 249 |
+
- π’ **VENDOR**: Manufacturers
|
| 250 |
+
- π¦ **PRODUCT**: Specific products
|
| 251 |
+
""")
|
| 252 |
+
|
| 253 |
+
if __name__ == "__main__":
|
| 254 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/transformers.git@6e0515e99c39444caae39472ee1b2fd76ece32f1
|
| 2 |
+
streamlit
|
| 3 |
+
spacy
|
| 4 |
+
pandas
|
| 5 |
+
torch
|