Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,375 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import random
|
| 4 |
-
import torch
|
| 5 |
-
import spaces
|
| 6 |
-
from PIL import Image
|
| 7 |
-
from diffusers import FlowMatchEulerDiscreteScheduler
|
| 8 |
-
from optimization import optimize_pipeline_
|
| 9 |
-
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
|
| 10 |
-
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
|
| 11 |
-
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
|
| 12 |
-
import math
|
| 13 |
-
from huggingface_hub import hf_hub_download
|
| 14 |
-
from safetensors.torch import load_file
|
| 15 |
-
from PIL import Image
|
| 16 |
-
import os
|
| 17 |
-
import gradio as gr
|
| 18 |
-
from gradio_client import Client, handle_file
|
| 19 |
-
import tempfile
|
| 20 |
-
from typing import Optional, Tuple, Any
|
| 21 |
-
|
| 22 |
-
# --- Model Loading ---
|
| 23 |
-
dtype = torch.bfloat16
|
| 24 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
-
pipe = QwenImageEditPlusPipeline.from_pretrained(
|
| 26 |
-
"Qwen/Qwen-Image-Edit-2509",
|
| 27 |
-
transformer=QwenImageTransformer2DModel.from_pretrained(
|
| 28 |
-
"linoyts/Qwen-Image-Edit-Rapid-AIO",
|
| 29 |
-
subfolder='transformer',
|
| 30 |
-
torch_dtype=dtype,
|
| 31 |
-
device_map='cuda'
|
| 32 |
-
),
|
| 33 |
-
torch_dtype=dtype
|
| 34 |
-
).to(device)
|
| 35 |
-
pipe.load_lora_weights(
|
| 36 |
-
"dx8152/Qwen-Edit-2509-Multiple-angles",
|
| 37 |
-
weight_name="镜头转换.safetensors",
|
| 38 |
-
adapter_name="angles"
|
| 39 |
-
)
|
| 40 |
-
pipe.set_adapters(["angles"], adapter_weights=[1.])
|
| 41 |
-
pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25)
|
| 42 |
-
pipe.unload_lora_weights()
|
| 43 |
-
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 44 |
-
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 45 |
-
optimize_pipeline_(
|
| 46 |
-
pipe,
|
| 47 |
-
image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))],
|
| 48 |
-
prompt="prompt"
|
| 49 |
-
)
|
| 50 |
-
|
| 51 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 52 |
-
|
| 53 |
-
def _generate_video_segment(
|
| 54 |
-
input_image_path: str,
|
| 55 |
-
output_image_path: str,
|
| 56 |
-
prompt: str,
|
| 57 |
-
request: gr.Request,
|
| 58 |
-
duration: float = 5.0 # مدة الفيديو بالثواني
|
| 59 |
-
) -> str:
|
| 60 |
-
"""
|
| 61 |
-
Generate a video segment of exact duration using Wan 2.2.
|
| 62 |
-
Duration is controlled via num_frames = duration * fps.
|
| 63 |
-
"""
|
| 64 |
-
x_ip_token = request.headers.get('x-ip-token', None)
|
| 65 |
-
headers = {"x-ip-token": x_ip_token} if x_ip_token else {}
|
| 66 |
-
|
| 67 |
-
video_client = Client(
|
| 68 |
-
"multimodalart/wan-2-2-first-last-frame",
|
| 69 |
-
headers=headers
|
| 70 |
-
)
|
| 71 |
-
|
| 72 |
-
fps = 25
|
| 73 |
-
num_frames = max(1, int(duration * fps)) # ضمان عدد صحيح وإيجابي
|
| 74 |
-
|
| 75 |
-
try:
|
| 76 |
-
result = video_client.predict(
|
| 77 |
-
start_image_pil=handle_file(input_image_path),
|
| 78 |
-
end_image_pil=handle_file(output_image_path),
|
| 79 |
-
prompt=prompt or "Camera movement transformation",
|
| 80 |
-
num_frames=num_frames,
|
| 81 |
-
fps=fps,
|
| 82 |
-
motion="medium", # يمكنك تغييره إلى "high" لسلاسة أكبر
|
| 83 |
-
api_name="/generate_video",
|
| 84 |
-
)
|
| 85 |
-
return result[0]["video"]
|
| 86 |
-
except Exception as e:
|
| 87 |
-
raise gr.Error(f"فشل إنشاء الفيديو: {str(e)}")
|
| 88 |
-
|
| 89 |
-
def build_camera_prompt(
|
| 90 |
-
rotate_deg: float = 0.0,
|
| 91 |
-
move_forward: float = 0.0,
|
| 92 |
-
vertical_tilt: float = 0.0,
|
| 93 |
-
wideangle: bool = False
|
| 94 |
-
) -> str:
|
| 95 |
-
prompt_parts = []
|
| 96 |
-
if rotate_deg != 0:
|
| 97 |
-
direction = "left" if rotate_deg > 0 else "right"
|
| 98 |
-
abs_deg = abs(rotate_deg)
|
| 99 |
-
prompt_parts.append(
|
| 100 |
-
f"将镜头向{direction}旋转{abs_deg}度 Rotate the camera {abs_deg} degrees to the {direction}."
|
| 101 |
-
)
|
| 102 |
-
if move_forward > 5:
|
| 103 |
-
prompt_parts.append("将镜头转为特写镜头 Turn the camera to a close-up.")
|
| 104 |
-
elif move_forward >= 1:
|
| 105 |
-
prompt_parts.append("将镜头向前移动 Move the camera forward.")
|
| 106 |
-
if vertical_tilt <= -1:
|
| 107 |
-
prompt_parts.append("将相机转向鸟瞰视角 Turn the camera to a bird's-eye view.")
|
| 108 |
-
elif vertical_tilt >= 1:
|
| 109 |
-
prompt_parts.append("将相机切换到仰视视角 Turn the camera to a worm's-eye view.")
|
| 110 |
-
if wideangle:
|
| 111 |
-
prompt_parts.append(" 将镜头转为广角镜头 Turn the camera to a wide-angle lens.")
|
| 112 |
-
final_prompt = " ".join(prompt_parts).strip()
|
| 113 |
-
return final_prompt if final_prompt else "no camera movement"
|
| 114 |
-
|
| 115 |
-
@spaces.GPU
|
| 116 |
-
def infer_camera_edit(
|
| 117 |
-
image: Optional[Image.Image] = None,
|
| 118 |
-
rotate_deg: float = 0.0,
|
| 119 |
-
move_forward: float = 0.0,
|
| 120 |
-
vertical_tilt: float = 0.0,
|
| 121 |
-
wideangle: bool = False,
|
| 122 |
-
seed: int = 0,
|
| 123 |
-
randomize_seed: bool = True,
|
| 124 |
-
true_guidance_scale: float = 1.0,
|
| 125 |
-
num_inference_steps: int = 4,
|
| 126 |
-
height: Optional[int] = None,
|
| 127 |
-
width: Optional[int] = None,
|
| 128 |
-
prev_output: Optional[Image.Image] = None,
|
| 129 |
-
) -> Tuple[Image.Image, int, str]:
|
| 130 |
-
progress = gr.Progress(track_tqdm=True)
|
| 131 |
-
|
| 132 |
-
prompt = build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle)
|
| 133 |
-
print(f"Generated Prompt: {prompt}")
|
| 134 |
-
|
| 135 |
-
if randomize_seed:
|
| 136 |
-
seed = random.randint(0, MAX_SEED)
|
| 137 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
| 138 |
-
|
| 139 |
-
pil_images = []
|
| 140 |
-
if image is not None:
|
| 141 |
-
if isinstance(image, Image.Image):
|
| 142 |
-
pil_images.append(image.convert("RGB"))
|
| 143 |
-
elif hasattr(image, "name"):
|
| 144 |
-
pil_images.append(Image.open(image.name).convert("RGB"))
|
| 145 |
-
elif prev_output:
|
| 146 |
-
pil_images.append(prev_output.convert("RGB"))
|
| 147 |
-
|
| 148 |
-
if len(pil_images) == 0:
|
| 149 |
-
raise gr.Error("يرجى رفع صورة أولاً.")
|
| 150 |
-
|
| 151 |
-
if prompt == "no camera movement":
|
| 152 |
-
return pil_images[0], seed, prompt
|
| 153 |
-
|
| 154 |
-
result = pipe(
|
| 155 |
-
image=pil_images,
|
| 156 |
-
prompt=prompt,
|
| 157 |
-
height=height if height != 0 else None,
|
| 158 |
-
width=width if width != 0 else None,
|
| 159 |
-
num_inference_steps=num_inference_steps,
|
| 160 |
-
generator=generator,
|
| 161 |
-
true_cfg_scale=true_guidance_scale,
|
| 162 |
-
num_images_per_prompt=1,
|
| 163 |
-
).images[0]
|
| 164 |
-
return result, seed, prompt
|
| 165 |
-
|
| 166 |
-
def create_video_between_images(
|
| 167 |
-
input_image: Optional[Image.Image],
|
| 168 |
-
output_image: Optional[np.ndarray],
|
| 169 |
-
prompt: str,
|
| 170 |
-
request: gr.Request,
|
| 171 |
-
video_duration: float = 5.0
|
| 172 |
-
) -> str:
|
| 173 |
-
if input_image is None or output_image is None:
|
| 174 |
-
raise gr.Error("كلا الصورتين مطلوبة لإنشاء الفيديو.")
|
| 175 |
-
|
| 176 |
-
try:
|
| 177 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
|
| 178 |
-
input_image.save(tmp.name)
|
| 179 |
-
input_image_path = tmp.name
|
| 180 |
-
output_pil = Image.fromarray(output_image.astype('uint8'))
|
| 181 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
|
| 182 |
-
output_pil.save(tmp.name)
|
| 183 |
-
output_image_path = tmp.name
|
| 184 |
-
|
| 185 |
-
video_path = _generate_video_segment(
|
| 186 |
-
input_image_path,
|
| 187 |
-
output_image_path,
|
| 188 |
-
prompt,
|
| 189 |
-
request,
|
| 190 |
-
duration=video_duration
|
| 191 |
-
)
|
| 192 |
-
# تنظيف الملفات المؤقتة
|
| 193 |
-
os.unlink(input_image_path)
|
| 194 |
-
os.unlink(output_image_path)
|
| 195 |
-
return video_path
|
| 196 |
-
except Exception as e:
|
| 197 |
-
raise gr.Error(f"فشل إنشاء الفيديو: {e}")
|
| 198 |
-
|
| 199 |
-
# --- UI ---
|
| 200 |
-
css = '''#col-container { max-width: 900px; margin: 0 auto; }
|
| 201 |
-
.dark .progress-text{color: white !important}
|
| 202 |
-
#examples{max-width: 900px; margin: 0 auto; }'''
|
| 203 |
-
|
| 204 |
-
def reset_all() -> list:
|
| 205 |
-
return [0, 0, 0, False, 5.0, False, True] # أضفنا video_duration
|
| 206 |
-
|
| 207 |
-
def end_reset() -> bool:
|
| 208 |
-
return False
|
| 209 |
-
|
| 210 |
-
def update_dimensions_on_upload(image: Optional[Image.Image]) -> Tuple[int, int]:
|
| 211 |
-
if image is None:
|
| 212 |
-
return 1024, 1024
|
| 213 |
-
original_width, original_height = image.size
|
| 214 |
-
if original_width > original_height:
|
| 215 |
-
new_width = 1024
|
| 216 |
-
new_height = int(new_width * (original_height / original_width))
|
| 217 |
-
else:
|
| 218 |
-
new_height = 1024
|
| 219 |
-
new_width = int(new_height * (original_width / original_height))
|
| 220 |
-
new_width = (new_width // 8) * 8
|
| 221 |
-
new_height = (new_height // 8) * 8
|
| 222 |
-
return new_width, new_height
|
| 223 |
-
|
| 224 |
-
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
|
| 225 |
-
with gr.Column(elem_id="col-container"):
|
| 226 |
-
gr.Markdown("## 🎬 Qwen Image Edit — Camera Angle Control + Video")
|
| 227 |
-
gr.Markdown("""
|
| 228 |
-
**تحكم كامل في زاوية الكاميرا + فيديو انتقالي بدقة 5 ثواني**
|
| 229 |
-
باستخدام LoRA متعدد الزوايا + Wan 2.2
|
| 230 |
-
""")
|
| 231 |
-
|
| 232 |
-
with gr.Row():
|
| 233 |
-
with gr.Column(scale=1):
|
| 234 |
-
image = gr.Image(label="الصورة الأصلية", type="pil")
|
| 235 |
-
prev_output = gr.Image(value=None, visible=False)
|
| 236 |
-
is_reset = gr.Checkbox(value=False, visible=False)
|
| 237 |
-
|
| 238 |
-
with gr.Tab("التحكم في الكاميرا"):
|
| 239 |
-
rotate_deg = gr.Slider(label="تدوير (يمين/يسار) °", minimum=-90, maximum=90, step=45, value=0)
|
| 240 |
-
move_forward = gr.Slider(label="تحريك للأمام → تكبير", minimum=0, maximum=10, step=5, value=0)
|
| 241 |
-
vertical_tilt = gr.Slider(label="زاوية عمودية (طائر ↔ دودة)", minimum=-1, maximum=1, step=1, value=0)
|
| 242 |
-
wideangle = gr.Checkbox(label="عدسة واسعة الزاوية", value=False)
|
| 243 |
-
|
| 244 |
-
with gr.Row():
|
| 245 |
-
reset_btn = gr.Button("إعادة تعيين")
|
| 246 |
-
run_btn = gr.Button("توليد", variant="primary")
|
| 247 |
-
|
| 248 |
-
with gr.Accordion("إعدادات متقدمة", open=False):
|
| 249 |
-
seed = gr.Slider(label="البذرة", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 250 |
-
randomize_seed = gr.Checkbox(label="بذرة عشوائية", value=True)
|
| 251 |
-
true_guidance_scale = gr.Slider(label="مقياس التوجيه", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
|
| 252 |
-
num_inference_steps = gr.Slider(label="خطوات الاستدلال", minimum=1, maximum=40, step=1, value=4)
|
| 253 |
-
height = gr.Slider(label="الارتفاع", minimum=256, maximum=2048, step=8, value=1024)
|
| 254 |
-
width = gr.Slider(label="العرض", minimum=256, maximum=2048, step=8, value=1024)
|
| 255 |
-
|
| 256 |
-
with gr.Column(scale=1):
|
| 257 |
-
result = gr.Image(label="الصورة المعدلة", interactive=False)
|
| 258 |
-
prompt_preview = gr.Textbox(label="النص المُرسل", interactive=False)
|
| 259 |
-
|
| 260 |
-
with gr.Accordion("إنشاء فيديو انتقالي", open=True):
|
| 261 |
-
video_duration = gr.Slider(
|
| 262 |
-
label="مدة الفيديو (ثواني)",
|
| 263 |
-
minimum=1, maximum=10, step=0.5, value=5.0
|
| 264 |
-
)
|
| 265 |
-
create_video_button = gr.Button(
|
| 266 |
-
"🎥 إنشاء فيديو (5 ثواني)",
|
| 267 |
-
variant="secondary",
|
| 268 |
-
visible=False
|
| 269 |
-
)
|
| 270 |
-
video_output = gr.Video(
|
| 271 |
-
label="الفيديو الناتج",
|
| 272 |
-
show_download_button=True,
|
| 273 |
-
autoplay=True,
|
| 274 |
-
height=500
|
| 275 |
-
)
|
| 276 |
-
|
| 277 |
-
# --- Events ---
|
| 278 |
-
inputs = [
|
| 279 |
-
image, rotate_deg, move_forward, vertical_tilt, wideangle,
|
| 280 |
-
seed, randomize_seed, true_guidance_scale, num_inference_steps,
|
| 281 |
-
height, width, prev_output
|
| 282 |
-
]
|
| 283 |
-
outputs = [result, seed, prompt_preview]
|
| 284 |
-
|
| 285 |
-
# Reset
|
| 286 |
-
reset_btn.click(
|
| 287 |
-
fn=reset_all,
|
| 288 |
-
inputs=None,
|
| 289 |
-
outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, video_duration, is_reset],
|
| 290 |
-
queue=False
|
| 291 |
-
).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)
|
| 292 |
-
|
| 293 |
-
# Generate + show video button
|
| 294 |
-
def infer_and_show(*args):
|
| 295 |
-
result_img, result_seed, result_prompt = infer_camera_edit(*args)
|
| 296 |
-
show_button = args[0] is not None
|
| 297 |
-
return result_img, result_seed, result_prompt, gr.update(visible=show_button)
|
| 298 |
-
|
| 299 |
-
run_event = run_btn.click(
|
| 300 |
-
fn=infer_and_show,
|
| 301 |
-
inputs=inputs,
|
| 302 |
-
outputs=outputs + [create_video_button]
|
| 303 |
-
)
|
| 304 |
-
|
| 305 |
-
# Create video
|
| 306 |
-
create_video_button.click(
|
| 307 |
-
fn=lambda: gr.update(visible=True),
|
| 308 |
-
outputs=video_output,
|
| 309 |
-
api_name=False
|
| 310 |
-
).then(
|
| 311 |
-
fn=create_video_between_images,
|
| 312 |
-
inputs=[image, result, prompt_preview, gr.Request(), video_duration],
|
| 313 |
-
outputs=video_output,
|
| 314 |
-
api_name="create_video"
|
| 315 |
-
)
|
| 316 |
-
|
| 317 |
-
# Examples
|
| 318 |
-
gr.Examples(
|
| 319 |
-
examples=[
|
| 320 |
-
["tool_of_the_sea.png", 90, 0, 0, False, 0, True, 1.0, 4, 568, 1024],
|
| 321 |
-
["monkey.jpg", -90, 0, 0, False, 0, True, 1.0, 4, 704, 1024],
|
| 322 |
-
["metropolis.jpg", 0, 0, -1, False, 0, True, 1.0, 4, 816, 1024],
|
| 323 |
-
["disaster_girl.jpg", -45, 0, 1, False, 0, True, 1.0, 4, 768, 1024],
|
| 324 |
-
["grumpy.png", 90, 0, 1, False, 0, True, 1.0, 4, 576, 1024]
|
| 325 |
-
],
|
| 326 |
-
inputs=[
|
| 327 |
-
image, rotate_deg, move_forward, vertical_tilt, wideangle,
|
| 328 |
-
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width
|
| 329 |
-
],
|
| 330 |
-
outputs=outputs,
|
| 331 |
-
fn=infer_camera_edit,
|
| 332 |
-
cache_examples="lazy",
|
| 333 |
-
elem_id="examples"
|
| 334 |
-
)
|
| 335 |
-
|
| 336 |
-
# Upload → update size + reset
|
| 337 |
-
image.upload(
|
| 338 |
-
fn=update_dimensions_on_upload,
|
| 339 |
-
inputs=[image],
|
| 340 |
-
outputs=[width, height]
|
| 341 |
-
).then(
|
| 342 |
-
fn=reset_all,
|
| 343 |
-
inputs=None,
|
| 344 |
-
outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, video_duration, is_reset],
|
| 345 |
-
queue=False
|
| 346 |
-
).then(
|
| 347 |
-
fn=end_reset,
|
| 348 |
-
inputs=None,
|
| 349 |
-
outputs=[is_reset],
|
| 350 |
-
queue=False
|
| 351 |
-
)
|
| 352 |
-
|
| 353 |
-
# Live inference
|
| 354 |
-
def maybe_infer(is_reset: bool, *args):
|
| 355 |
-
if is_reset:
|
| 356 |
-
return [gr.update()] * 4
|
| 357 |
-
result_img, result_seed, result_prompt = infer_camera_edit(*args)
|
| 358 |
-
show_button = args[0] is not None
|
| 359 |
-
return result_img, result_seed, result_prompt, gr.update(visible=show_button)
|
| 360 |
-
|
| 361 |
-
control_inputs_with_flag = [is_reset] + inputs
|
| 362 |
-
for control in [rotate_deg, move_forward, vertical_tilt, wideangle, video_duration]:
|
| 363 |
-
control.change(
|
| 364 |
-
fn=maybe_infer,
|
| 365 |
-
inputs=control_inputs_with_flag,
|
| 366 |
-
outputs=outputs + [create_video_button]
|
| 367 |
-
)
|
| 368 |
-
|
| 369 |
-
run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])
|
| 370 |
-
|
| 371 |
-
# API
|
| 372 |
-
gr.api(infer_camera_edit, api_name="infer_edit_camera_angles")
|
| 373 |
-
gr.api(create_video_between_images, api_name="create_video_between_images")
|
| 374 |
-
|
| 375 |
-
demo.launch(mcp_server=True, show_api=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|