Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,522 Bytes
660c6ca f071d5c 660c6ca f071d5c 660c6ca 0a36cc0 660c6ca f071d5c 660c6ca f071d5c 660c6ca f071d5c 660c6ca f071d5c 660c6ca f071d5c 660c6ca f071d5c 660c6ca 029730c 660c6ca 8391927 660c6ca 8391927 660c6ca 8391927 660c6ca 8391927 660c6ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
import spaces
import gradio as gr
import os
import random
import re
import numpy as np
import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
# Import the custom tiling pipeline and its components
from pipeline_z_image_mod import ZImageMoDTilingPipeline
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
GGUFQuantizationConfig,
)
from diffusers.models import ZImageTransformer2DModel
from huggingface_hub import hf_hub_download
# Import the safety checker function
try:
from prompt_check import is_unsafe_prompt
UNSAFE_CHECK_AVAILABLE = True
except ImportError:
print("Warning: 'prompt_check.py' not found. NSFW prompt check will be disabled.")
UNSAFE_CHECK_AVAILABLE = False
def is_unsafe_prompt(*args, **kwargs):
return False
# 1. Environment Variables for Model Paths
# Base model for VAE, text_encoder, tokenizer
BASE_MODEL_ID = os.getenv("BASE_MODEL_ID", "Tongyi-MAI/Z-Image-Turbo")
# GGUF model for the transformer
GGUF_REPO_ID = os.getenv("GGUF_REPO_ID", "jayn7/Z-Image-Turbo-GGUF")
GGUF_FILENAME = os.getenv("GGUF_FILENAME", "z_image_turbo-Q4_K_M.gguf")
GGUF_LOCAL_DIR = os.getenv(
"GGUF_LOCAL_DIR", None
) # Set this path for local use, e.g., "F:\\models\\Z-Image-Turbo"
USE_SPACES_ENV = os.getenv("USE_SPACES", "false").lower()
USE_SPACES = USE_SPACES_ENV not in ("false", "0", "no", "none")
# System prompt for the safety checker
UNSAFE_PROMPT_CHECK = os.getenv("UNSAFE_PROMPT_CHECK")
MAX_SEED = np.iinfo(np.int32).max
# 2. Load Models (GGUF + Standard Components)
print("--- Loading Models ---")
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Loading VAE...")
if USE_SPACES:
vae = AutoencoderKL.from_pretrained(
BASE_MODEL_ID, subfolder="vae", torch_dtype=torch.bfloat16
).to(device)
else:
vae = AutoencoderKL.from_pretrained(
BASE_MODEL_ID, subfolder="vae", torch_dtype=torch.bfloat16
)
print("Loading Text Encoder and Tokenizer...")
if USE_SPACES:
text_encoder = AutoModelForCausalLM.from_pretrained(
BASE_MODEL_ID, subfolder="text_encoder", dtype=torch.bfloat16
).to(device)
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, subfolder="tokenizer")
else:
text_encoder = AutoModelForCausalLM.from_pretrained(
BASE_MODEL_ID, subfolder="text_encoder", dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, subfolder="tokenizer")
print(f"Loading Transformer from GGUF: {GGUF_REPO_ID}/{GGUF_FILENAME}...")
transformer_path = (
hf_hub_download(
GGUF_REPO_ID,
GGUF_FILENAME,
local_dir=GGUF_LOCAL_DIR,
local_dir_use_symlinks=False,
)
if GGUF_LOCAL_DIR
else hf_hub_download(GGUF_REPO_ID, GGUF_FILENAME)
)
if USE_SPACES:
transformer = ZImageTransformer2DModel.from_single_file(
transformer_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
dtype=torch.bfloat16,
).to(device)
else:
transformer = ZImageTransformer2DModel.from_single_file(
transformer_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
dtype=torch.bfloat16,
)
# 3. Assemble the Tiling Pipeline
print("\nAssembling the ZImageMoDTilingPipeline...")
scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=3.0)
if USE_SPACES:
pipe = ZImageMoDTilingPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
transformer=transformer,
).to(device)
else:
pipe = ZImageMoDTilingPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
transformer=transformer,
)
print("Enabling model CPU offload...")
pipe.enable_model_cpu_offload()
# Load Translation Models
print("Loading translation models...")
try:
ko_en_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
zh_en_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-zh-en")
except Exception as e:
ko_en_translator, zh_en_translator = None, None
print(f"Warning: Could not load translation models: {e}")
print("Pipeline loaded and ready.")
# Helper Functions
def translate_prompt(text: str, language: str) -> str:
"""Translates text to English if the selected language is not English."""
if language == "English" or not text.strip():
return text
translated = text
if (
language == "Korean"
and ko_en_translator
and any("\uac00" <= char <= "\ud7a3" for char in text)
):
translated = ko_en_translator(text)[0]["translation_text"]
elif (
language == "Chinese"
and zh_en_translator
and any("\u4e00" <= char <= "\u9fff" for char in text)
):
translated = zh_en_translator(text)[0]["translation_text"]
return translated
def create_hdr_effect(image, hdr_strength):
if hdr_strength == 0:
return image
from PIL import ImageEnhance, Image
if isinstance(image, Image.Image):
image = np.array(image)
from scipy.ndimage import gaussian_filter
blurred = gaussian_filter(image, sigma=5)
sharpened = np.clip(image + hdr_strength * (image - blurred), 0, 255).astype(
np.uint8
)
pil_img = Image.fromarray(sharpened)
converter = ImageEnhance.Color(pil_img)
return converter.enhance(1 + hdr_strength)
@spaces.GPU(duration=120)
def generate_z_image_panorama(
left_prompt,
center_prompt,
right_prompt,
left_gs,
center_gs,
right_gs,
overlap_pixels,
steps,
shift,
generation_seed,
tile_weighting_method,
prompt_language,
target_height,
target_width,
hdr,
randomize_seed,
progress=gr.Progress(track_tqdm=True),
):
"""
Generate a panoramic image using the Z-Image Turbo model with tiling and composition.
Args:
left_prompt (str): Text prompt for the left section of the panorama.
center_prompt (str): Text prompt for the center section of the panorama.
right_prompt (str): Text prompt for the right section of the panorama.
left_gs (float): Guidance scale for the left tile.
center_gs (float): Guidance scale for the center tile.
right_gs (float): Guidance scale for the right tile.
overlap_pixels (int): Number of pixels to overlap between tiles.
steps (int): Number of inference steps for generation.
shift (float): Time Shift.
generation_seed (int): Random seed for reproducibility.
tile_weighting_method (str): Method for weighting overlapping tile regions.
prompt_language (str): Language code for prompt translation.
target_height (int): Height of the generated panorama in pixels.
target_width (int): Width of the generated panorama in pixels.
hdr (float): HDR effect intensity.
randomize_seed (boolean): Not used.
progress (gr.Progress): Gradio progress tracker.
Returns:
PIL.Image: The generated panoramic image with optional HDR effect applied.
"""
if not left_prompt or not center_prompt or not right_prompt:
gr.Info("⚡️ Prompts must be provided!")
return gr.skip()
# Safety Check
prompts_to_check = [left_prompt, center_prompt, right_prompt]
for p in prompts_to_check:
if UNSAFE_CHECK_AVAILABLE and is_unsafe_prompt(
pipe.text_encoder,
device,
pipe.tokenizer,
system_prompt=UNSAFE_PROMPT_CHECK,
user_prompt=p,
):
raise gr.Error(
f"Unsafe prompt detected. Please modify your prompt and try again."
)
generator = torch.Generator("cuda").manual_seed(generation_seed)
pipe.scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=shift)
final_height, final_width = int(target_height), int(target_width)
translated_left = translate_prompt(left_prompt, prompt_language)
translated_center = translate_prompt(center_prompt, prompt_language)
translated_right = translate_prompt(right_prompt, prompt_language)
image = pipe(
prompt=[[translated_left, translated_center, translated_right]],
height=final_height,
width=final_width,
num_inference_steps=steps,
guidance_scale_tiles=[[left_gs, center_gs, right_gs]],
tile_overlap=overlap_pixels,
tile_weighting_method=tile_weighting_method,
generator=generator,
).images[0]
return create_hdr_effect(image, hdr)
def calculate_tile_size(target_height, target_width, overlap_pixels):
"""
Calculate tile dimensions for panoramic image generation.
Args:
target_height (int): The target height of the final panoramic image in pixels.
target_width (int): The target width of the final panoramic image in pixels.
overlap_pixels (int): The number of overlapping pixels between adjacent tiles.
Returns:
tuple: A tuple of 2 gr.update objects containing:
- final_height: Final panorama height after tiling
- final_width: Final panorama width after tiling
"""
num_cols = 3
num_rows = 1
tile_width = (target_width + (num_cols - 1) * overlap_pixels) // num_cols
tile_height = (target_height + (num_rows - 1) * overlap_pixels) // num_rows
tile_width -= tile_width % 16
tile_height -= tile_height % 16
final_width = tile_width * num_cols - (num_cols - 1) * overlap_pixels
final_height = tile_height * num_rows - (num_rows - 1) * overlap_pixels
return (
gr.update(value=final_height),
gr.update(value=final_width),
)
def randomize_seed_fn(generation_seed: int, randomize_seed: bool) -> int:
if randomize_seed:
return random.randint(0, MAX_SEED)
return generation_seed
def run_for_examples(
left_prompt,
center_prompt,
right_prompt,
left_gs,
center_gs,
right_gs,
overlap_pixels,
steps,
shift,
generation_seed,
tile_weighting_method,
prompt_language,
target_height,
target_width,
hdr,
randomize_seed
):
return generate_z_image_panorama(
left_prompt,
center_prompt,
right_prompt,
left_gs,
center_gs,
right_gs,
overlap_pixels,
steps,
shift,
generation_seed,
tile_weighting_method,
prompt_language,
target_height,
target_width,
hdr,
randomize_seed
)
def clear_result():
return gr.update(value=None)
def update_dimensions_from_preset(resolution_preset):
"""Updates the width and height sliders based on a preset string."""
match = re.search(r"(\d+)\s*[x]\s*(\d+)", resolution_preset)
if match:
width, height = int(match.group(1)), int(match.group(2))
return gr.update(value=width), gr.update(value=height)
return gr.update(), gr.update()
# UI Layout
theme = gr.themes.Default(
primary_hue="red", secondary_hue="orange", neutral_hue="gray"
).set(
body_background_fill="*neutral_100",
body_background_fill_dark="*neutral_900",
body_text_color="*neutral_900",
body_text_color_dark="*neutral_100",
panel_background_fill="*neutral_800",
panel_background_fill_dark="*neutral_900",
input_background_fill="white",
input_background_fill_dark="*neutral_800",
button_primary_background_fill="*primary_500",
button_primary_background_fill_dark="*primary_700",
button_primary_text_color="white",
button_primary_text_color_dark="white",
button_secondary_background_fill="*secondary_500",
button_secondary_background_fill_dark="*secondary_700",
button_secondary_text_color="white",
button_secondary_text_color_dark="white",
)
css_code = ""
try:
with open("./style.css", "r", encoding="utf-8") as f:
css_code += f.read() + "\n"
except FileNotFoundError:
pass
title = """<h1 align="center">Z Image Turbo - Panorama 🏞️✨</h1>
<div style="text-align: center;">
<span>Create panoramic compositions with Z-Image-Turbo.</span>
</div>
"""
# Adapted panoramic resolutions
PANORAMIC_RESOLUTIONS = [
"2048x1024 (2:1)",
"2560x1024 (2.5:1)",
"3072x1024 (3:1)",
"2304x896 ( ~2.5:1)",
"2880x1152 (~2.5:1)",
"3840x1536 (2.5:1)",
]
with gr.Blocks(theme=theme, css=css_code, title="Panorama Z-Image") as app:
gr.Markdown(title)
with gr.Row():
with gr.Column(scale=7):
generate_button = gr.Button("Generate", variant="primary")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Left Region")
left_prompt = gr.Textbox(lines=4, label="Prompt (Left)")
left_gs = gr.Slider(
minimum=0.0,
maximum=10.0,
value=0.0,
step=0.1,
label="Left Guidance",
visible=False,
)
with gr.Column(scale=1):
gr.Markdown("### Center Region")
center_prompt = gr.Textbox(lines=4, label="Prompt (Center)")
center_gs = gr.Slider(
minimum=0.0,
maximum=10.0,
value=0.0,
step=0.1,
label="Center Guidance",
visible=False,
)
with gr.Column(scale=1):
gr.Markdown("### Right Region")
right_prompt = gr.Textbox(lines=4, label="Prompt (Right)")
right_gs = gr.Slider(
minimum=0.0,
maximum=10.0,
value=0.0,
step=0.1,
label="Right Guidance",
visible=False,
)
with gr.Row():
result = gr.Image(
label="Generated Image",
show_label=True,
format="png",
interactive=False,
)
with gr.Column(scale=1, min_width=200):
gr.Markdown(
"""
### Related Apps
Check out these other great demos:
- **[Official Z-Image Demo](https://huggingface.co/spaces/Tongyi-MAI/Z-Image-Turbo)**
*The official demo for single image generation.*
- **[Panorama FLUX](https://huggingface.co/spaces/elismasilva/flux-1-panorama)**
*The Panorama app using the FLUX model.*
"""
)
with gr.Sidebar():
gr.Markdown("### Generation Parameters")
prompt_language = gr.Radio(
choices=["English", "Korean", "Chinese"],
value="English",
label="Prompt Language",
)
resolution_preset = gr.Dropdown(
choices=PANORAMIC_RESOLUTIONS,
value=PANORAMIC_RESOLUTIONS[2],
label="Panoramic Resolution Preset",
)
with gr.Row():
height = gr.Slider(
label="Target Height", value=1024, step=16, minimum=512, maximum=2048
)
width = gr.Slider(
label="Target Width", value=3072, step=16, minimum=512, maximum=4096
)
with gr.Row():
overlap = gr.Slider(
minimum=0, maximum=512, value=256, step=16, label="Tile Overlap"
)
tile_weighting_method = gr.Dropdown(
label="Blending Method", choices=["Cosine", "Gaussian"], value="Cosine"
)
with gr.Row():
calc_tile = gr.Button("Calculate Final Dimensions", variant="primary")
with gr.Row():
new_target_height = gr.Textbox(
label="Actual Height", value=1024, interactive=False
)
new_target_width = gr.Textbox(
label="Actual Width", value=3072, interactive=False
)
with gr.Row():
steps = gr.Slider(
minimum=1, maximum=50, value=9, step=1, label="Inference Steps"
)
shift = gr.Slider(label="Time Shift", minimum=1.0, maximum=10.0, value=3.0, step=0.1)
with gr.Row():
generation_seed = gr.Slider(
label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
hdr = gr.Slider(
minimum=0.0, maximum=1.0, value=0.1, step=0.00, label="HDR Effect"
)
with gr.Row():
gr.Examples(
examples=[
[
"On the left side of a wide, wet stone courtyard at night, a traditional wooden temple building has a soft, warm glow from its illuminated windows, the environment is a deep, dark night sky.",
"Young Chinese woman in red Hanfu, standing gracefully in the center of the stone-paved temple courtyard, intricate embroidery. Impeccable makeup, red floral forehead pattern. Elaborate high bun, golden phoenix headdress, red flowers, beads. Holds round folding fan with lady, trees, bird. Neon lightning-bolt lamp (⚡️), bright yellow glow, above extended left palm. Soft-lit outdoor night background, silhouetted tiered pagoda (西安大雁塔), blurred colorful distant lights.",
"On the right side of the frame, a wooden temple corridor with a row of glowing paper lanterns recedes into the background. The lantern light reflects on the wet stone path below, and the distant pagoda is silhouetted against the same deep, dark night sky.",
0.0,
0.0,
0.0,
256,
8,
3.0,
109320357,
"Cosine",
"English",
1024,
3072,
0.0,
False,
],
[
"Street photography of a bustling, modern Chinese city square in the morning. On the left, people in business attire walk past gleaming glass and steel office buildings under a hazy, bright sun.",
"The center of the vast, modern plaza, where a large, elegant water fountain sprays water high into the air. In the background, through the mist of the fountain, the same modern glass and steel office buildings continue across the scene. The sun reflects off the wet plaza floor.",
"The right side of the plaza, where groups of fashionable teenagers are casually standing near the concrete pillars of a modern building, looking at their smartphones under the same hazy, bright sun.",
0.0,
0.0,
0.0,
256,
8,
6.0,
2024,
"Cosine",
"English",
1024,
3072,
0.0,
False
],
[
"The edge of the green carpeted arena floor, with the blurred figures of spectators in the stands rising up in the background. A judge's table is partially visible on the far left.",
"In the center of the green carpeted arena floor, a proud man in a fine suit stands with his perfectly groomed white poodle, both looking forward. The poodle wears a matching tiny tuxedo.",
"Further down the green carpeted arena on the right, a line of other dog handlers and their breeds are waiting their turn in the distance, their forms slightly blurred by the depth of field.",
0.0,
0.0,
0.0,
200,
8,
3.0,
1146985307,
"Gaussian",
"English",
1024,
2672,
0.0,
False
],
[
"Iron Man, repulsor rays blasting enemies in destroyed cityscape, cinematic lighting, photorealistic. Focus: Iron Man.",
"Captain America charging forward, vibranium shield deflecting energy blasts in destroyed cityscape, cinematic composition. Focus: Captain America.",
"Thor wielding Stormbreaker in destroyed cityscape, lightning crackling, powerful strike downwards, cinematic photography. Focus: Thor.",
0,
0,
0,
200,
8,
4.0,
85512926,
"Cosine",
"English",
1024,
3440,
0.0,
False
]
],
inputs=[
left_prompt,
center_prompt,
right_prompt,
left_gs,
center_gs,
right_gs,
overlap,
steps,
shift,
generation_seed,
tile_weighting_method,
prompt_language,
height,
width,
hdr,
randomize_seed
],
fn=run_for_examples,
outputs=result,
cache_examples=False,
api_name=False,
)
# Event Handling
predict_inputs = [
left_prompt,
center_prompt,
right_prompt,
left_gs,
center_gs,
right_gs,
overlap,
steps,
shift,
generation_seed,
tile_weighting_method,
prompt_language,
new_target_height,
new_target_width,
hdr,
randomize_seed
]
resolution_preset.change(
fn=update_dimensions_from_preset,
inputs=resolution_preset,
outputs=[width, height],
api_name=False,
)
calc_tile.click(
fn=calculate_tile_size,
inputs=[height, width, overlap],
outputs=[new_target_height, new_target_width],
api_name="calculate_tile_size"
)
generate_button.click(
fn=clear_result,
inputs=None,
outputs=result,
queue=False,
api_name=False
).then(
fn=calculate_tile_size,
inputs=[height, width, overlap],
outputs=[new_target_height, new_target_width],
show_api=False
).then(
fn=randomize_seed_fn,
inputs=[generation_seed, randomize_seed],
outputs=generation_seed,
queue=False,
api_name=False,
).then(
fn=generate_z_image_panorama,
inputs=predict_inputs,
outputs=result,
show_progress="full",
api_name="generate_z_image_panorama",
)
app.queue().launch(mcp_server=True, share=True)
|