PaperVerse / app.py
Avijit Ghosh
add paperverse code
f30a36e
import gradio as gr
import pandas as pd
import plotly.express as px
import time
import os
import tempfile
import requests
import duckdb
import json
from datasets import load_dataset
from huggingface_hub import logout as hf_logout
from gradio_rangeslider import RangeSlider
# --- Constants ---
TOP_K_CHOICES = list(range(5, 51, 5))
HF_DATASET_ID = "evijit/paperverse_daily_data"
# Direct parquet file URL (public)
PARQUET_URL = "https://huggingface.co/datasets/evijit/paperverse_daily_data/resolve/main/papers_with_semantic_taxonomy.parquet"
TAXONOMY_JSON_PATH = "integrated_ml_taxonomy.json"
# Simple content filters derived from the new dataset
TAG_FILTER_CHOICES = [
"None",
"Has Code",
"Has Media",
"Has Organization",
]
# Load taxonomy from JSON file
def load_taxonomy():
"""Load the ML taxonomy from JSON file."""
try:
with open(TAXONOMY_JSON_PATH, 'r') as f:
taxonomy = json.load(f)
# Extract choices for dropdowns
categories = sorted(taxonomy.keys())
# Build subcategories and topics
all_subcategories = set()
all_topics = set()
for category, subcats in taxonomy.items():
for subcat, topics in subcats.items():
all_subcategories.add(subcat)
all_topics.update(topics)
return {
'categories': ["All"] + categories,
'subcategories': ["All"] + sorted(all_subcategories),
'topics': ["All"] + sorted(all_topics),
'taxonomy': taxonomy
}
except Exception as e:
print(f"Error loading taxonomy from JSON: {e}")
return {
'categories': ["All"],
'subcategories': ["All"],
'topics': ["All"],
'taxonomy': {}
}
TAXONOMY_DATA = load_taxonomy()
def _first_non_null(*values):
for v in values:
if v is None:
continue
# treat empty strings as null-ish
if isinstance(v, str) and v.strip() == "":
continue
return v
return None
def _get_nested(row, *paths):
"""Try multiple dotted paths in a row that may contain dicts; return first non-null."""
for path in paths:
cur = row
ok = True
for key in path.split('.'):
if isinstance(cur, dict) and key in cur:
cur = cur[key]
else:
ok = False
break
if ok and cur is not None:
return cur
return None
def load_datasets_data():
"""Load the PaperVerse Daily dataset from the Hugging Face Hub and normalize columns used by the app."""
start_time = time.time()
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
try:
# First try: direct parquet download (avoids any auth header issues)
try:
print(f"Trying direct parquet download: {PARQUET_URL}")
with requests.get(PARQUET_URL, stream=True, timeout=120) as resp:
resp.raise_for_status()
with tempfile.NamedTemporaryFile(suffix=".parquet", delete=False) as tmpf:
for chunk in resp.iter_content(chunk_size=1024 * 1024):
if chunk:
tmpf.write(chunk)
tmp_path = tmpf.name
try:
# Use DuckDB to read parquet to avoid pyarrow decoding issues
df = duckdb.query(f"SELECT * FROM read_parquet('{tmp_path}')").df()
finally:
try:
os.remove(tmp_path)
except Exception:
pass
print("Loaded DataFrame from direct parquet download via DuckDB.")
except Exception as direct_e:
print(f"Direct parquet load failed: {direct_e}. Falling back to datasets loader...")
# Force anonymous access in case an invalid cached token is present
# Clear any token environment variables that could inject a bad Authorization header
for env_key in ("HF_TOKEN", "HUGGINGFACE_HUB_TOKEN", "HF_HUB_TOKEN"):
if os.environ.pop(env_key, None) is not None:
print(f"Cleared env var: {env_key}")
# Prefer explicit train split when available
try:
dataset_obj = load_dataset(HF_DATASET_ID, split="train", token=None)
except TypeError:
dataset_obj = load_dataset(HF_DATASET_ID, split="train", use_auth_token=False)
except Exception:
# Fallback: load all splits and pick the first available
try:
dataset_obj = load_dataset(HF_DATASET_ID, token=None)
except TypeError:
dataset_obj = load_dataset(HF_DATASET_ID, use_auth_token=False)
# Handle both Dataset and DatasetDict
try:
# If it's a Dataset (single split), this will work
df = dataset_obj.to_pandas()
except AttributeError:
# Otherwise assume DatasetDict and take the first split
first_split = list(dataset_obj.keys())[0]
df = dataset_obj[first_split].to_pandas()
# --- Normalize expected columns for the visualization ---
# organization: prefer top-level organization_name, then paper_organization.name/fullname, else Unknown
if 'organization_name' in df.columns:
org_series = df['organization_name']
else:
# try nested dicts commonly produced by HF datasets
org_series = df.apply(
lambda r: _first_non_null(
_get_nested(r, 'paper_organization.name'),
_get_nested(r, 'paper_organization.fullname'),
_get_nested(r, 'organization.name'),
_get_nested(r, 'organization.fullname')
), axis=1
)
df['organization'] = org_series.fillna('Unknown')
# Extract organization avatar/logo
if 'organization_name' in df.columns:
# Try to get avatar from paper_organization or organization struct
def _get_avatar(row):
for path in ['paper_organization.avatar', 'organization.avatar']:
av = _get_nested(row, path)
if av and isinstance(av, str) and av.strip():
return av
return None
org_avatar_series = df.apply(_get_avatar, axis=1)
else:
org_avatar_series = pd.Series([None] * len(df))
df['organization_avatar'] = org_avatar_series
# id for each paper row
cand_cols = [
'paper_id', 'paper_discussionId', 'key'
]
id_val = None
for c in cand_cols:
if c in df.columns:
id_val = df[c]
break
if id_val is None:
# fallback to title + index
if 'paper_title' in df.columns:
df['id'] = df['paper_title'].astype(str) + '_' + df.reset_index().index.astype(str)
elif 'title' in df.columns:
df['id'] = df['title'].astype(str) + '_' + df.reset_index().index.astype(str)
else:
df['id'] = df.reset_index().index.astype(str)
else:
df['id'] = id_val.astype(str)
# numeric metrics used for aggregation
def _to_num(col_name):
if col_name in df.columns:
return pd.to_numeric(df[col_name], errors='coerce').fillna(0.0)
return pd.Series([0.0] * len(df))
df['paper_upvotes'] = _to_num('paper_upvotes')
df['numComments'] = _to_num('numComments')
df['paper_githubStars'] = _to_num('paper_githubStars')
# computed boolean filters
def _has_code(row):
# Check for GitHub repo
try:
gh = row['paper_githubRepo'] if 'paper_githubRepo' in row and pd.notna(row['paper_githubRepo']) else None
if isinstance(gh, str) and len(gh.strip()) > 0:
return True
except Exception:
pass
# Check for project page
try:
pp = row.get('paper_projectPage') if isinstance(row, dict) else row.get('paper_projectPage', None)
if isinstance(pp, str) and len(str(pp).strip()) > 0 and str(pp).strip().lower() != 'n/a':
return True
except Exception:
pass
return False
def _has_media(row):
for c in ['paper_mediaUrls', 'mediaUrls']:
try:
v = row[c]
if isinstance(v, list) and len(v) > 0:
return True
# some providers store arrays as strings like "[... ]"
if isinstance(v, str) and v.strip().startswith('[') and len(v.strip()) > 2:
return True
except Exception:
continue
return False
df['has_code'] = df.apply(_has_code, axis=1)
df['has_media'] = df.apply(_has_media, axis=1)
df['has_organization'] = df['organization'].astype(str).str.strip().ne('Unknown')
# Process publishedAt field for date filtering
if 'publishedAt' in df.columns:
df['publishedAt_dt'] = pd.to_datetime(df['publishedAt'], errors='coerce')
else:
df['publishedAt_dt'] = pd.NaT
# Ensure topic hierarchy columns exist and are strings
for col_name, default_val in [
('primary_category', 'Unknown'),
('primary_subcategory', 'Unknown'),
('primary_topic', 'Unknown'),
]:
if col_name not in df.columns:
df[col_name] = default_val
else:
df[col_name] = df[col_name].fillna(default_val).astype(str).replace({'': default_val})
# Create a human-friendly paper label for treemap leaves: "<title> β€” <topic>"
def _pick_title(row):
t1 = row.get('paper_title') if isinstance(row, dict) else None
try:
t1 = row['paper_title'] if 'paper_title' in row and pd.notna(row['paper_title']) and str(row['paper_title']).strip() != '' else None
except Exception:
pass
if t1 is not None:
return str(t1)
try:
t2 = row['title'] if 'title' in row and pd.notna(row['title']) and str(row['title']).strip() != '' else None
except Exception:
t2 = None
return str(t2) if t2 is not None else 'Untitled'
def _pick_topic(row):
# Prefer primary_topic, else first of taxonomy_topics
try:
pt = row['primary_topic'] if 'primary_topic' in row and pd.notna(row['primary_topic']) and str(row['primary_topic']).strip() != '' else None
except Exception:
pt = None
if pt is not None:
return str(pt)
try:
tt = row['taxonomy_topics'] if 'taxonomy_topics' in row else None
if isinstance(tt, list) and len(tt) > 0:
return str(tt[0])
# Sometimes arrays are serialized as strings like "[ ... ]"
if isinstance(tt, str) and tt.strip().startswith('[') and len(tt.strip()) > 2:
# naive parse for first quoted token
inner = tt.strip().lstrip('[').rstrip(']')
first = inner.split(',')[0].strip().strip('"\'')
return first if first else 'No topic'
except Exception:
pass
return 'No topic'
titles = df.apply(_pick_title, axis=1)
df['paper_label'] = titles.astype(str)
# Build a Topic Chain for hover details
df['topic_chain'] = (
df['primary_category'].astype(str) + ' > ' +
df['primary_subcategory'].astype(str) + ' > ' +
df['primary_topic'].astype(str)
)
# Ensure link fields exist for hover details
for link_col in ['paper_githubRepo', 'paper_projectPage']:
if link_col not in df.columns:
df[link_col] = 'N/A'
else:
df[link_col] = df[link_col].fillna('N/A').replace({'': 'N/A'})
msg = f"Successfully loaded dataset in {time.time() - start_time:.2f}s."
print(msg)
return df, True, msg
except Exception as e:
# If we encountered invalid credentials, try logging out programmatically and retry once anonymously
if "Invalid credentials" in str(e) or "401 Client Error" in str(e):
try:
print("Encountered auth error; attempting to clear cached token and retry anonymously...")
hf_logout()
try:
dataset_dict = load_dataset(HF_DATASET_ID, token=None)
except TypeError:
dataset_dict = load_dataset(HF_DATASET_ID, use_auth_token=False)
df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas()
msg = f"Successfully loaded dataset after clearing token in {time.time() - start_time:.2f}s."
print(msg)
return df, True, msg
except Exception as e2:
err_msg = f"Failed to load dataset after retry. Error: {e2} (initial: {e})"
print(err_msg)
return pd.DataFrame(), False, err_msg
err_msg = f"Failed to load dataset. Error: {e}"
print(err_msg)
return pd.DataFrame(), False, err_msg
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, skip_cats=None, group_by='organization', date_range=None):
"""
Filter data and prepare it for a multi-level treemap.
- Preserves individual datasets for the top K organizations.
- Groups all other organizations into a single "Other" category.
- date_range: tuple of (min_timestamp, max_timestamp) in seconds since epoch
"""
if df is None or df.empty:
return pd.DataFrame()
filtered_df = df.copy()
# Apply date range filter
if date_range is not None and 'publishedAt_dt' in filtered_df.columns:
min_ts, max_ts = date_range
min_date = pd.to_datetime(min_ts, unit='s')
max_date = pd.to_datetime(max_ts, unit='s')
# Remove timezone info for comparison if publishedAt_dt is tz-naive
if filtered_df['publishedAt_dt'].dt.tz is None:
min_date = min_date.tz_localize(None)
max_date = max_date.tz_localize(None)
filtered_df = filtered_df[
(filtered_df['publishedAt_dt'] >= min_date) &
(filtered_df['publishedAt_dt'] <= max_date)
]
col_map = {
"Has Code": "has_code",
"Has Media": "has_media",
"Has Organization": "has_organization",
}
if tag_filter and tag_filter != "None" and tag_filter in col_map:
if col_map[tag_filter] in filtered_df.columns:
filtered_df = filtered_df[filtered_df[col_map[tag_filter]]]
if filtered_df.empty:
return pd.DataFrame()
if count_by not in filtered_df.columns:
filtered_df[count_by] = 0.0
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors='coerce').fillna(0.0)
if group_by == 'organization':
all_org_totals = filtered_df.groupby("organization")[count_by].sum()
top_org_names = all_org_totals.nlargest(top_k, keep='first').index.tolist()
top_orgs_df = filtered_df[filtered_df['organization'].isin(top_org_names)].copy()
other_total = all_org_totals[~all_org_totals.index.isin(top_org_names)].sum()
final_df_for_plot = top_orgs_df
if other_total > 0:
other_row = pd.DataFrame([{
'organization': 'Other',
'paper_label': 'Other',
'primary_category': 'Other',
'primary_subcategory': 'Other',
'primary_topic': 'Other',
'topic_chain': 'Other > Other > Other',
'paper_githubRepo': 'N/A',
'paper_projectPage': 'N/A',
'organization_avatar': None,
count_by: other_total
}])
final_df_for_plot = pd.concat([final_df_for_plot, other_row], ignore_index=True)
if skip_cats and len(skip_cats) > 0:
final_df_for_plot = final_df_for_plot[~final_df_for_plot['organization'].isin(skip_cats)]
final_df_for_plot["root"] = "papers"
return final_df_for_plot
else:
# Topic grouping: apply top-k to topic combinations and handle skip list
topic_totals = filtered_df.groupby(['primary_category', 'primary_subcategory', 'primary_topic'])[count_by].sum()
top_topics = topic_totals.nlargest(top_k, keep='first').index.tolist()
# Filter to top topics
top_topics_df = filtered_df[
filtered_df.apply(
lambda r: (r['primary_category'], r['primary_subcategory'], r['primary_topic']) in top_topics,
axis=1
)
].copy()
# Apply skip filter (skip by primary_topic name)
if skip_cats and len(skip_cats) > 0:
top_topics_df = top_topics_df[~top_topics_df['primary_topic'].isin(skip_cats)]
top_topics_df["root"] = "papers"
return top_topics_df
def create_treemap(treemap_data, count_by, title=None, path=None, metric_label=None):
"""Generate the Plotly treemap figure from the prepared data."""
if treemap_data.empty or treemap_data[count_by].sum() <= 0:
fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
return fig
if path is None:
path = ["root", "organization", "paper_label"]
# Add custom data columns as regular columns for Plotly to access
# This ensures all nodes (including intermediate hierarchy nodes) have these fields
# Ensure organization_avatar column exists (for search details, not hover)
if 'organization_avatar' not in treemap_data.columns:
treemap_data['organization_avatar'] = None
fig = px.treemap(
treemap_data,
path=path,
values=count_by,
hover_data={
'primary_category': True,
'primary_subcategory': True,
'primary_topic': True,
'paper_githubRepo': True,
'paper_projectPage': True,
},
title=title,
color_discrete_sequence=px.colors.qualitative.Plotly
)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
display_metric = metric_label if metric_label else count_by
# Clean hover without organization avatar (images shown in search details instead)
fig.update_traces(
textinfo="label+value",
hovertemplate=(
"<b>%{label}</b><br>"
+ "%{value:,} " + display_metric +
"<br><br><b>Topic Hierarchy:</b><br>"
+ "%{customdata[0]} > %{customdata[1]} > %{customdata[2]}<br>"
+ "<br><b>Links:</b><br>"
+ "GitHub: %{customdata[3]}<br>"
+ "Project: %{customdata[4]}"
+ "<extra></extra>"
),
)
return fig
# --- Gradio UI Blocks ---
with gr.Blocks(
title="πŸ“š PaperVerse Daily Explorer",
fill_width=True,
css="""
/* Hide the timestamp numbers on the range slider */
#date-range-slider-wrapper .head,
#date-range-slider-wrapper div[data-testid="range-slider"] > span {
display: none !important;
}
"""
) as demo:
datasets_data_state = gr.State(pd.DataFrame())
loading_complete_state = gr.State(False)
date_range_state = gr.State(None) # Store min/max timestamps
with gr.Row():
gr.Markdown("# πŸ“š PaperVerse Daily Explorer")
with gr.Tabs():
with gr.Tab("πŸ“Š Treemap Visualization"):
with gr.Row():
with gr.Column(scale=1):
count_by_dropdown = gr.Dropdown(
label="Metric",
choices=[
("Upvotes", "paper_upvotes"),
("Comments", "numComments"),
],
value="paper_upvotes",
)
group_by_dropdown = gr.Dropdown(
label="Group by",
choices=[("Organization", "organization"), ("Topic", "topic")],
value="organization",
)
gr.Markdown("**Filters**")
filter_code = gr.Checkbox(label="Has Code", value=False)
filter_media = gr.Checkbox(label="Has Media", value=False)
filter_org = gr.Checkbox(label="Has Organization", value=False)
gr.Markdown("**Date Range**")
date_range_slider = RangeSlider(
minimum=0,
maximum=100,
value=(0, 100),
label="Paper Release Date Range",
interactive=True,
elem_id="date-range-slider-wrapper"
)
date_range_display = gr.Markdown("Loading date range...")
top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
category_filter_dropdown = gr.Dropdown(label="Primary Category", choices=["All"], value="All")
subcategory_filter_dropdown = gr.Dropdown(label="Primary Subcategory", choices=["All"], value="All")
topic_filter_dropdown = gr.Dropdown(label="Primary Topic", choices=["All"], value="All")
skip_cats_textbox = gr.Textbox(label="Organizations to Skip", value="unaffiliated, Other")
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
with gr.Column(scale=3):
plot_output = gr.Plot()
status_message_md = gr.Markdown("Initializing...")
data_info_md = gr.Markdown("")
with gr.Tab("πŸ” Paper Search"):
with gr.Column():
gr.Markdown("### οΏ½ Search Papers and Organizations")
with gr.Row():
search_item = gr.Textbox(
label="Search Organization or Paper",
placeholder="Type organization name or paper title to see details...",
scale=4
)
search_button = gr.Button("Show Details", scale=1, variant="secondary")
selected_info_html = gr.HTML(value="<p style='color: gray;'>Enter an organization name or paper title above to see details</p>")
def _update_button_interactivity(is_loaded_flag):
return gr.update(interactive=is_loaded_flag)
def _format_date_range(date_range_tuple, date_range_value):
"""Convert slider values to readable date range text"""
if date_range_tuple is None:
return "Date range unavailable"
min_ts, max_ts = date_range_tuple
selected_min, selected_max = date_range_value
# Convert slider values to timestamps
# The slider values are already timestamps
min_date = pd.to_datetime(selected_min, unit='s')
max_date = pd.to_datetime(selected_max, unit='s')
return f"**Selected Range:** {min_date.strftime('%B %d, %Y')} to {max_date.strftime('%B %d, %Y')}"
def _toggle_labels_by_grouping(group_by_value):
# Update labels based on grouping mode
if group_by_value == 'topic':
top_k_label = "Number of Top Topics"
skip_label = "Topics to Skip"
skip_value = "" # Clear skip box for topics
else:
top_k_label = "Number of Top Organizations"
skip_label = "Organizations to Skip"
skip_value = "unaffiliated, Other" # Default orgs to skip
return (
gr.update(label=top_k_label),
gr.update(label=skip_label, value=skip_value)
)
## CHANGE: New combined function to load data and generate the initial plot on startup.
def load_and_generate_initial_plot(progress=gr.Progress()):
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...")
# --- Part 1: Data Loading ---
try:
current_df, load_success_flag, status_msg_from_load = load_datasets_data()
if load_success_flag:
progress(0.5, desc="Processing data...")
date_display = "Pre-processed (date unavailable)"
if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]):
ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True)
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')
# Calculate date range from publishedAt_dt
min_ts = 0
max_ts = 100
date_range_text = "Date range unavailable"
date_range_tuple = None
if 'publishedAt_dt' in current_df.columns:
valid_dates = current_df['publishedAt_dt'].dropna()
if len(valid_dates) > 0:
min_date = valid_dates.min()
max_date = valid_dates.max()
min_ts = int(min_date.timestamp())
max_ts = int(max_date.timestamp())
date_range_tuple = (min_ts, max_ts)
date_range_text = f"**Full Range:** {min_date.strftime('%B %d, %Y')} to {max_date.strftime('%B %d, %Y')}"
data_info_text = (f"### Data Information\n- Source: `{HF_DATASET_ID}`\n"
f"- Status: {status_msg_from_load}\n"
f"- Total records loaded: {len(current_df):,}\n"
f"- Data as of: {date_display}\n")
else:
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
min_ts = 0
max_ts = 100
date_range_text = "Date range unavailable"
date_range_tuple = None
except Exception as e:
status_msg_from_load = f"An unexpected error occurred: {str(e)}"
data_info_text = f"### Critical Error\n- {status_msg_from_load}"
load_success_flag = False
current_df = pd.DataFrame() # Ensure df is empty on failure
min_ts = 0
max_ts = 100
date_range_text = "Date range unavailable"
date_range_tuple = None
print(f"Critical error in load_and_generate_initial_plot: {e}")
# --- Part 2: Generate Initial Plot ---
progress(0.6, desc="Generating initial plot...")
# Defaults matching UI definitions
default_metric = "paper_upvotes"
default_tag = "None"
default_k = 25
default_group_by = "organization"
default_skip_cats = "unaffiliated, Other"
# Use taxonomy from JSON instead of calculating from dataset
cat_choices = TAXONOMY_DATA['categories']
subcat_choices = TAXONOMY_DATA['subcategories']
topic_choices = TAXONOMY_DATA['topics']
# Reuse the existing controller function for plotting (with date range set to None for initial load)
initial_plot, initial_status = ui_generate_plot_controller(
default_metric, False, False, False, default_k, default_group_by, "All", "All", "All", default_skip_cats, None, current_df, progress
)
# Also update taxonomy dropdown choices
return (
current_df,
load_success_flag,
data_info_text,
initial_status,
initial_plot,
gr.update(choices=cat_choices, value="All"),
gr.update(choices=subcat_choices, value="All"),
gr.update(choices=topic_choices, value="All"),
gr.update(minimum=min_ts, maximum=max_ts, value=(min_ts, max_ts)),
date_range_text,
date_range_tuple,
)
def ui_generate_plot_controller(metric_choice, has_code, has_media, has_org,
k_orgs, group_by_choice,
category_choice, subcategory_choice, topic_choice,
skip_cats_input, date_range, df_current_datasets, progress=gr.Progress()):
if df_current_datasets is None or df_current_datasets.empty:
return create_treemap(pd.DataFrame(), metric_choice), "Dataset data is not loaded. Cannot generate plot."
progress(0.1, desc="Aggregating data...")
cats_to_skip = [cat.strip() for cat in skip_cats_input.split(',') if cat.strip()]
# Apply content filters (checkboxes)
df_filtered = df_current_datasets.copy()
if has_code:
df_filtered = df_filtered[df_filtered['has_code']]
if has_media:
df_filtered = df_filtered[df_filtered['has_media']]
if has_org:
df_filtered = df_filtered[df_filtered['has_organization']]
# Apply taxonomy filters
if category_choice and category_choice != 'All':
df_filtered = df_filtered[df_filtered['primary_category'] == category_choice]
if subcategory_choice and subcategory_choice != 'All':
df_filtered = df_filtered[df_filtered['primary_subcategory'] == subcategory_choice]
if topic_choice and topic_choice != 'All':
df_filtered = df_filtered[df_filtered['primary_topic'] == topic_choice]
treemap_df = make_treemap_data(df_filtered, metric_choice, k_orgs, None, cats_to_skip, group_by_choice, date_range)
progress(0.7, desc="Generating plot...")
title_labels = {
"paper_upvotes": "Upvotes",
"numComments": "Comments",
}
if group_by_choice == "topic":
chart_title = f"PaperVerse Daily - {title_labels.get(metric_choice, metric_choice)} by Topic"
path = ["root", "primary_category", "primary_subcategory", "primary_topic", "paper_label"]
else:
chart_title = f"PaperVerse Daily - {title_labels.get(metric_choice, metric_choice)} by Organization"
path = ["root", "organization", "paper_label"]
plotly_fig = create_treemap(
treemap_df,
metric_choice,
chart_title,
path=path,
metric_label=title_labels.get(metric_choice, metric_choice),
)
if treemap_df.empty:
plot_stats_md = "No data matches the selected filters. Please try different options."
else:
total_value_in_plot = treemap_df[metric_choice].sum()
total_items_in_plot = treemap_df[treemap_df['paper_label'] != 'Other']['paper_label'].nunique()
if group_by_choice == "topic":
group_count = treemap_df[["primary_category", "primary_subcategory", "primary_topic"]].drop_duplicates().shape[0]
group_line = f"**Topics Shown**: {group_count:,} unique triplets"
else:
group_line = f"**Organizations Shown**: {treemap_df['organization'].nunique():,}"
plot_stats_md = (
f"## Plot Statistics\n- {group_line}\n"
f"- **Individual Papers Shown**: {total_items_in_plot:,}\n"
f"- **Total {title_labels.get(metric_choice, metric_choice)} in plot**: {int(total_value_in_plot):,}"
)
return plotly_fig, plot_stats_md
# --- Event Wiring ---
## CHANGE: Updated demo.load to call the new function and to add plot_output to the outputs list.
demo.load(
fn=load_and_generate_initial_plot,
inputs=[],
outputs=[
datasets_data_state,
loading_complete_state,
data_info_md,
status_message_md,
plot_output,
category_filter_dropdown,
subcategory_filter_dropdown,
topic_filter_dropdown,
date_range_slider,
date_range_display,
date_range_state,
]
)
loading_complete_state.change(
fn=_update_button_interactivity,
inputs=loading_complete_state,
outputs=generate_plot_button
)
# Update labels based on grouping mode
group_by_dropdown.change(
fn=_toggle_labels_by_grouping,
inputs=group_by_dropdown,
outputs=[top_k_dropdown, skip_cats_textbox],
)
# Update date range display when slider changes
date_range_slider.change(
fn=_format_date_range,
inputs=[date_range_state, date_range_slider],
outputs=date_range_display,
show_progress="hidden"
)
def handle_search_details(search_text, df_current):
"""Search for an organization or paper and show detailed information."""
if not search_text or not search_text.strip():
return "<p style='color: gray;'>Please enter a search term</p>"
if df_current is None or df_current.empty:
return "<p style='color: gray;'>No data available</p>"
search_text = search_text.strip()
try:
# Try to find matching rows by organization or paper title (case-insensitive partial match)
matching_rows = df_current[
df_current['organization'].str.contains(search_text, case=False, na=False) |
df_current['paper_label'].str.contains(search_text, case=False, na=False) |
(df_current['paper_title'].str.contains(search_text, case=False, na=False) if 'paper_title' in df_current.columns else False)
]
if matching_rows.empty:
return f"<p style='color: orange;'>No results found for: <b>{search_text}</b></p><p style='color: gray;'>Try searching for an organization name (e.g., 'Qwen', 'Meta') or paper title keyword</p>"
# Build the info panel HTML showing all matching results
num_results = len(matching_rows)
html_parts = [
f"<div style='padding: 15px; border: 1px solid #ddd; border-radius: 8px; background: #f9f9f9; max-height: 600px; overflow-y: auto;'>",
f"<h3 style='margin: 0 0 15px 0; color: #333;'>πŸ” Found {num_results} result{'s' if num_results > 1 else ''} for: <span style='color: #0366d6;'>{search_text}</span></h3>"
]
# Limit to first 20 results to avoid too much content
display_rows = matching_rows.head(20)
for idx, (_, row) in enumerate(display_rows.iterrows()):
# Add separator between results
if idx > 0:
html_parts.append("<hr style='margin: 15px 0; border: none; border-top: 1px solid #ddd;'/>")
html_parts.append("<div style='margin-bottom: 10px; overflow: auto;'>")
# Get organization avatar from precomputed column
org_avatar = row.get('organization_avatar')
# Organization logo if available
if org_avatar and isinstance(org_avatar, str) and org_avatar.strip() and org_avatar.strip().lower() not in ['none', 'null', 'n/a', '']:
html_parts.append(f"<img src='{org_avatar}' style='max-width: 60px; max-height: 60px; border-radius: 50%; margin-bottom: 8px; float: left; margin-right: 12px; border: 2px solid #ddd;' onerror=\"this.style.display='none'\"/>")
# Get paper thumbnail (direct field from schema)
paper_thumbnail = row.get('thumbnail')
# Paper thumbnail if available
if paper_thumbnail and isinstance(paper_thumbnail, str) and paper_thumbnail.strip() and paper_thumbnail.strip().lower() not in ['none', 'null', 'n/a', '']:
html_parts.append(f"<img src='{paper_thumbnail}' style='max-width: 120px; max-height: 120px; border-radius: 8px; margin-bottom: 8px; float: right; margin-left: 12px; border: 1px solid #ddd;' onerror=\"this.style.display='none'\"/>")
# Organization name
org_name = row.get('organization', 'Unknown')
html_parts.append(f"<p style='margin: 0 0 5px 0; font-weight: bold; color: #333;'>🏒 {org_name}</p>")
# Paper title
paper_title = row.get('paper_title', row.get('title', 'Untitled'))
html_parts.append(f"<p style='margin: 0 0 5px 0; color: #555; font-size: 0.95em;'>πŸ“„ {paper_title}</p>")
# Topic hierarchy
category = row.get('primary_category', 'Unknown')
subcategory = row.get('primary_subcategory', 'Unknown')
topic = row.get('primary_topic', 'Unknown')
html_parts.append(f"<p style='margin: 0 0 5px 0; font-size: 0.9em; color: #666;'><b>Topics:</b> {category} β†’ {subcategory} β†’ {topic}</p>")
# Metrics
upvotes = row.get('paper_upvotes', 0)
comments = row.get('numComments', 0)
html_parts.append(f"<p style='margin: 0 0 5px 0; font-size: 0.9em;'><b>Metrics:</b> ⬆️ {upvotes:,} upvotes | πŸ’¬ {comments:,} comments</p>")
# Links
github = row.get('paper_githubRepo')
project = row.get('paper_projectPage')
links = []
if github and isinstance(github, str) and github.strip() and github.strip().lower() not in ['n/a', 'none']:
links.append(f"<a href='{github}' target='_blank' style='color: #0366d6; margin-right: 15px;'>πŸ”— GitHub</a>")
if project and isinstance(project, str) and project.strip() and project.strip().lower() not in ['n/a', 'none']:
links.append(f"<a href='{project}' target='_blank' style='color: #0366d6;'>πŸ”— Project</a>")
if links:
html_parts.append(f"<p style='margin: 0; font-size: 0.9em;'>{' '.join(links)}</p>")
html_parts.append("<div style='clear: both;'></div>")
html_parts.append("</div>")
if num_results > 20:
html_parts.append(f"<p style='margin-top: 15px; color: #666; font-style: italic;'>Showing first 20 of {num_results} results. Refine your search for fewer results.</p>")
html_parts.append("</div>")
return "".join(html_parts)
except Exception as e:
return f"<p style='color: red;'>Error displaying details: {str(e)}</p>"
generate_plot_button.click(
fn=ui_generate_plot_controller,
inputs=[
count_by_dropdown,
filter_code,
filter_media,
filter_org,
top_k_dropdown,
group_by_dropdown,
category_filter_dropdown,
subcategory_filter_dropdown,
topic_filter_dropdown,
skip_cats_textbox,
date_range_slider,
datasets_data_state,
],
outputs=[plot_output, status_message_md]
)
# Handle search button for showing details
search_button.click(
fn=handle_search_details,
inputs=[search_item, datasets_data_state],
outputs=[selected_info_html]
)
# Also trigger on Enter key in search box
search_item.submit(
fn=handle_search_details,
inputs=[search_item, datasets_data_state],
outputs=[selected_info_html]
)
if __name__ == "__main__":
print("Application starting...")
demo.queue().launch()