File size: 6,312 Bytes
1bca40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d0b778
1bca40f
1d0b778
f7ac4d6
99bd427
1bca40f
f7ac4d6
99bd427
f7ac4d6
 
 
1bca40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99bd427
1bca40f
 
 
 
 
 
 
 
 
 
 
 
1d0b778
1bca40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7ac4d6
99bd427
f7ac4d6
1d0b778
99bd427
 
f7ac4d6
99bd427
f7ac4d6
 
 
 
 
 
 
99bd427
f7ac4d6
 
 
99bd427
f7ac4d6
 
99bd427
 
 
 
 
 
 
 
 
1d0b778
f7ac4d6
 
 
1d0b778
 
f7ac4d6
 
 
99bd427
f7ac4d6
 
 
 
 
1bca40f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

import pandas as pd
import gradio as gr
import csv
from collections import defaultdict


def strip_colname(x):
    if x.startswith('score_'):
        return x[6:]
    return x


INTRO = """The current leaderboard displays performance across all filtered directions based on the dev subset of BOUQuET.

A smarter leaderboard and the code for reproducing the evaluations will be published soon!
"""

LANGS_EXPLANATION = """## Languages
For the description of languages, please refer to https://huggingface.co/datasets/facebook/bouquet#languages.
"""

METRICS_EXPLANATION = """## Metrics
1. `metricx_both`: [google/metricx-24-hybrid-xl-v2p6](https://huggingface.co/google/metricx-24-hybrid-xl-v2p6) score based on both source and reference. **Attention: lower is better!**
2. `xcomet_both`: []() score based on both source and reference.
3. `CHRFpp`: ChrF++ score ([sacrebleu](https://github.com/mjpost/sacrebleu) implementation) based on reference.
4. `glotlid_ref`: probability, as predicted by the [GlotLID model](https://huggingface.co/cis-lmu/glotlid), that translation and reference are in the same language.
"""

SYSTEMS_EXPLANATION = """## Systems
Descriptions of the implementation of the systems will come out later.
"""


def leaderboard_tab():
    stats = pd.read_csv("data/benchmark_stats.tsv", sep="\t", quoting=csv.QUOTE_NONE)
    stats.columns = [strip_colname(c) for c in stats.columns]
    
    metrics = ['metricx_both', 'xcomet_both', 'CHRFpp', 'glotlid_ref']
    systems = sorted(set(stats["system"]))
    levels = ["sentence_level", "paragraph_level"]
    ALL = "ALL"
    MEAN = "Average"
    BEST = "Best"
    XX2EN = "Everything-into-English"
    EN2XX = "English-into-Everything"

    lang_src2tgt = defaultdict(set)
    lang_tgt2src = defaultdict(set)
    langs_src = set()
    langs_tgt = set()
    for src_lang, tgt_lang in stats[["src_lang", "tgt_lang"]].drop_duplicates().values:
        lang_src2tgt[src_lang].add(tgt_lang)
        lang_tgt2src[tgt_lang].add(src_lang)
        langs_src.add(src_lang)
        langs_tgt.add(tgt_lang)

    with gr.Tab("Leaderboard"):
        gr.Markdown("# BOUQuET translation leaderboard")
        gr.Markdown(INTRO)

        gr.Markdown("## Systems ranking")
        # Inputs
        gr_level = gr.Dropdown(levels, value="sentence_level", label="Level")
        gr_src_lang = gr.Dropdown([ALL] + sorted(langs_src), value=ALL, label="Source lang")
        gr_tgt_lang = gr.Dropdown([ALL] + sorted(langs_tgt), value=ALL, label="Target lang")

        # Interactivity
        inputs = [gr_level, gr_src_lang, gr_tgt_lang]

        def get_lb(level, src_lang, tgt_lang):
            filtered = stats[stats["level"].eq(level)]
            if src_lang != ALL:
                filtered = filtered[filtered["src_lang"].eq(src_lang)]
            if tgt_lang != ALL:
                filtered = filtered[filtered["tgt_lang"].eq(tgt_lang)]
            means = filtered.groupby(['system'])[metrics].mean().reset_index().sort_values('metricx_both')
            means.columns = [strip_colname(c) for c in means.columns]
            styler = means.style.background_gradient().format(precision=4)
            return styler

        df_all = get_lb(*[inp.value for inp in inputs])
        gr_df = gr.Dataframe(df_all)
        
        for inp in inputs:
            inp.change(fn=get_lb, inputs=inputs, outputs=gr_df)
        
        # Interdependecy of the controls
        def src2tgt(src_lang, tgt_lang):
            if src_lang == ALL:
                choices = [ALL] + sorted(langs_tgt)
            else:
                choices = [ALL] + sorted(lang_src2tgt[src_lang])
            
            return gr.update(choices=choices, value=tgt_lang)
        
        def tgt2src(src_lang, tgt_lang):
            if tgt_lang == ALL:
                choices = [ALL] + sorted(langs_src)
            else:
                choices = [ALL] + sorted(lang_tgt2src[tgt_lang])
            return gr.update(choices=choices, value=src_lang)
        
        gr_src_lang.input(fn=src2tgt, inputs=[gr_src_lang, gr_tgt_lang], outputs=gr_tgt_lang)
        gr_tgt_lang.input(fn=tgt2src, inputs=[gr_src_lang, gr_tgt_lang], outputs=gr_src_lang)

        gr.Markdown("## Languages difficulty")
        gr_system = gr.Dropdown([MEAN, BEST] + systems, value=MEAN, label="Translation system")
        gr_direction = gr.Dropdown([XX2EN, EN2XX], value=XX2EN, label="Translation direction")
        gr_metric = gr.Dropdown(metrics, label="Quality metric", value="metricx_both")
        gr_level2 = gr.Dropdown(levels, value="sentence_level", label="Level")
        bar_controls = [gr_system, gr_direction, gr_metric, gr_level2]

        def get_hist(system, direction, metric, level):
            # decide on the data to process
            if direction == EN2XX:
                direction_filter = stats['src_lang'].eq('eng_Latn')
                lang_col = "tgt_lang"
            else:
                direction_filter = stats['tgt_lang'].eq('eng_Latn')
                lang_col = "src_lang"
            if system in (MEAN, BEST):
                system_filter = stats["system"].astype(bool)
            else:
                system_filter = stats['system'].eq(system)
            subset = stats[system_filter & direction_filter & stats["level"].eq(level)]

            # Compute the means and update the plot
            grouped = subset.groupby(lang_col)[metric]
            if system == BEST:
                if metric == "metricx_both":
                    means = grouped.min()
                else:
                    means = grouped.max()
            else:
                means = grouped.mean()
            means = means.sort_values(
                ascending=(metric=="metricx_both")
            )
            means = means.to_frame().reset_index()
            return gr.update(
                value=means, x=lang_col, y=metric, x_label_angle=-90,
                height=500,
                sort="y", 
            )
        
        default_bar = get_hist(*[x.value for x in bar_controls])
        gr_barplot = gr.BarPlot(**default_bar)

        for inp in bar_controls:
            inp.change(fn=get_hist, inputs=bar_controls, outputs=gr_barplot)
        
        gr.Markdown(LANGS_EXPLANATION)
        gr.Markdown(METRICS_EXPLANATION)
        gr.Markdown(SYSTEMS_EXPLANATION)