Move buttoms under select columns window into categories
Browse files- app.py +87 -31
- src/display/utils.py +26 -18
app.py
CHANGED
|
@@ -63,16 +63,22 @@ leaderboard_df = original_df.copy()
|
|
| 63 |
# Searching and filtering
|
| 64 |
def update_table(
|
| 65 |
hidden_df: pd.DataFrame,
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
type_query: list,
|
| 68 |
-
precision_query:
|
| 69 |
size_query: list,
|
| 70 |
show_deleted: bool,
|
| 71 |
query: str,
|
| 72 |
):
|
| 73 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
| 74 |
filtered_df = filter_queries(query, filtered_df)
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
return df
|
| 77 |
|
| 78 |
|
|
@@ -131,6 +137,8 @@ def filter_models(
|
|
| 131 |
|
| 132 |
return filtered_df
|
| 133 |
|
|
|
|
|
|
|
| 134 |
|
| 135 |
demo = gr.Blocks(css=custom_css)
|
| 136 |
with demo:
|
|
@@ -148,20 +156,54 @@ with demo:
|
|
| 148 |
elem_id="search-bar",
|
| 149 |
)
|
| 150 |
with gr.Row():
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
],
|
| 162 |
-
label="Select columns to show",
|
| 163 |
-
elem_id="column-select",
|
| 164 |
-
interactive=True,
|
| 165 |
)
|
| 166 |
with gr.Row():
|
| 167 |
deleted_models_visibility = gr.Checkbox(
|
|
@@ -191,12 +233,13 @@ with demo:
|
|
| 191 |
elem_id="filter-columns-size",
|
| 192 |
)
|
| 193 |
|
| 194 |
-
leaderboard_table = gr.
|
| 195 |
value=leaderboard_df[
|
| 196 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 197 |
-
+
|
| 198 |
],
|
| 199 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
|
|
|
| 200 |
datatype=TYPES,
|
| 201 |
elem_id="leaderboard-table",
|
| 202 |
interactive=False,
|
|
@@ -204,7 +247,7 @@ with demo:
|
|
| 204 |
)
|
| 205 |
|
| 206 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 207 |
-
hidden_leaderboard_table_for_search = gr.
|
| 208 |
value=original_df[COLS],
|
| 209 |
headers=COLS,
|
| 210 |
datatype=TYPES,
|
|
@@ -212,30 +255,43 @@ with demo:
|
|
| 212 |
)
|
| 213 |
search_bar.submit(
|
| 214 |
update_table,
|
| 215 |
-
[
|
| 216 |
hidden_leaderboard_table_for_search,
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
filter_columns_type,
|
| 219 |
filter_columns_precision,
|
| 220 |
filter_columns_size,
|
| 221 |
deleted_models_visibility,
|
| 222 |
search_bar,
|
| 223 |
],
|
| 224 |
-
leaderboard_table,
|
| 225 |
)
|
| 226 |
-
for selector in [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
selector.change(
|
| 228 |
update_table,
|
| 229 |
-
[
|
| 230 |
hidden_leaderboard_table_for_search,
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
filter_columns_type,
|
| 233 |
filter_columns_precision,
|
| 234 |
filter_columns_size,
|
| 235 |
deleted_models_visibility,
|
| 236 |
search_bar,
|
| 237 |
],
|
| 238 |
-
leaderboard_table,
|
| 239 |
queue=True,
|
| 240 |
)
|
| 241 |
|
|
@@ -253,7 +309,7 @@ with demo:
|
|
| 253 |
open=False,
|
| 254 |
):
|
| 255 |
with gr.Row():
|
| 256 |
-
finished_eval_table = gr.
|
| 257 |
value=finished_eval_queue_df,
|
| 258 |
headers=EVAL_COLS,
|
| 259 |
datatype=EVAL_TYPES,
|
|
@@ -264,7 +320,7 @@ with demo:
|
|
| 264 |
open=False,
|
| 265 |
):
|
| 266 |
with gr.Row():
|
| 267 |
-
running_eval_table = gr.
|
| 268 |
value=running_eval_queue_df,
|
| 269 |
headers=EVAL_COLS,
|
| 270 |
datatype=EVAL_TYPES,
|
|
@@ -276,7 +332,7 @@ with demo:
|
|
| 276 |
open=False,
|
| 277 |
):
|
| 278 |
with gr.Row():
|
| 279 |
-
pending_eval_table = gr.
|
| 280 |
value=pending_eval_queue_df,
|
| 281 |
headers=EVAL_COLS,
|
| 282 |
datatype=EVAL_TYPES,
|
|
@@ -342,4 +398,4 @@ with demo:
|
|
| 342 |
scheduler = BackgroundScheduler()
|
| 343 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 344 |
scheduler.start()
|
| 345 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
| 63 |
# Searching and filtering
|
| 64 |
def update_table(
|
| 65 |
hidden_df: pd.DataFrame,
|
| 66 |
+
columns_info: list,
|
| 67 |
+
columns_eval: list,
|
| 68 |
+
columns_metadata: list,
|
| 69 |
+
columns_popularity: list,
|
| 70 |
+
columns_revision: list,
|
| 71 |
type_query: list,
|
| 72 |
+
precision_query: list,
|
| 73 |
size_query: list,
|
| 74 |
show_deleted: bool,
|
| 75 |
query: str,
|
| 76 |
):
|
| 77 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
| 78 |
filtered_df = filter_queries(query, filtered_df)
|
| 79 |
+
# Combine all column selections
|
| 80 |
+
selected_columns = columns_info + columns_eval + columns_metadata + columns_popularity + columns_revision
|
| 81 |
+
df = select_columns(filtered_df, selected_columns)
|
| 82 |
return df
|
| 83 |
|
| 84 |
|
|
|
|
| 137 |
|
| 138 |
return filtered_df
|
| 139 |
|
| 140 |
+
def uncheck_all():
|
| 141 |
+
return [], [], [], [], []
|
| 142 |
|
| 143 |
demo = gr.Blocks(css=custom_css)
|
| 144 |
with demo:
|
|
|
|
| 156 |
elem_id="search-bar",
|
| 157 |
)
|
| 158 |
with gr.Row():
|
| 159 |
+
with gr.Accordion("Select columns to show"):
|
| 160 |
+
with gr.Tab("Model Information"):
|
| 161 |
+
shown_columns_info = gr.CheckboxGroup(
|
| 162 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Model Information"],
|
| 163 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Model Information"],
|
| 164 |
+
label="Model Information",
|
| 165 |
+
interactive=True,
|
| 166 |
+
)
|
| 167 |
+
with gr.Tab("Evaluation Scores"):
|
| 168 |
+
shown_columns_eval = gr.CheckboxGroup(
|
| 169 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Evaluation Scores"],
|
| 170 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Evaluation Scores"],
|
| 171 |
+
label="Evaluation Scores",
|
| 172 |
+
interactive=True,
|
| 173 |
+
)
|
| 174 |
+
with gr.Tab("Model Metadata"):
|
| 175 |
+
shown_columns_metadata = gr.CheckboxGroup(
|
| 176 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Model Metadata"],
|
| 177 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Model Metadata"],
|
| 178 |
+
label="Model Metadata",
|
| 179 |
+
interactive=True,
|
| 180 |
+
)
|
| 181 |
+
with gr.Tab("Popularity Metrics"):
|
| 182 |
+
shown_columns_popularity = gr.CheckboxGroup(
|
| 183 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Popularity Metrics"],
|
| 184 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Popularity Metrics"],
|
| 185 |
+
label="Popularity Metrics",
|
| 186 |
+
interactive=True,
|
| 187 |
+
)
|
| 188 |
+
with gr.Tab("Revision and Availability"):
|
| 189 |
+
shown_columns_revision = gr.CheckboxGroup(
|
| 190 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Revision and Availability"],
|
| 191 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Revision and Availability"],
|
| 192 |
+
label="Revision and Availability",
|
| 193 |
+
interactive=True,
|
| 194 |
+
)
|
| 195 |
+
with gr.Row():
|
| 196 |
+
uncheck_all_button = gr.Button("Uncheck All")
|
| 197 |
+
uncheck_all_button.click(
|
| 198 |
+
uncheck_all,
|
| 199 |
+
inputs=[],
|
| 200 |
+
outputs=[
|
| 201 |
+
shown_columns_info,
|
| 202 |
+
shown_columns_eval,
|
| 203 |
+
shown_columns_metadata,
|
| 204 |
+
shown_columns_popularity,
|
| 205 |
+
shown_columns_revision
|
| 206 |
],
|
|
|
|
|
|
|
|
|
|
| 207 |
)
|
| 208 |
with gr.Row():
|
| 209 |
deleted_models_visibility = gr.Checkbox(
|
|
|
|
| 233 |
elem_id="filter-columns-size",
|
| 234 |
)
|
| 235 |
|
| 236 |
+
leaderboard_table = gr.Dataframe(
|
| 237 |
value=leaderboard_df[
|
| 238 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 239 |
+
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default]
|
| 240 |
],
|
| 241 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 242 |
+
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
| 243 |
datatype=TYPES,
|
| 244 |
elem_id="leaderboard-table",
|
| 245 |
interactive=False,
|
|
|
|
| 247 |
)
|
| 248 |
|
| 249 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 250 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
| 251 |
value=original_df[COLS],
|
| 252 |
headers=COLS,
|
| 253 |
datatype=TYPES,
|
|
|
|
| 255 |
)
|
| 256 |
search_bar.submit(
|
| 257 |
update_table,
|
| 258 |
+
inputs=[
|
| 259 |
hidden_leaderboard_table_for_search,
|
| 260 |
+
shown_columns_info,
|
| 261 |
+
shown_columns_eval,
|
| 262 |
+
shown_columns_metadata,
|
| 263 |
+
shown_columns_popularity,
|
| 264 |
+
shown_columns_revision,
|
| 265 |
filter_columns_type,
|
| 266 |
filter_columns_precision,
|
| 267 |
filter_columns_size,
|
| 268 |
deleted_models_visibility,
|
| 269 |
search_bar,
|
| 270 |
],
|
| 271 |
+
outputs=leaderboard_table,
|
| 272 |
)
|
| 273 |
+
for selector in [
|
| 274 |
+
shown_columns_info, shown_columns_eval, shown_columns_metadata,
|
| 275 |
+
shown_columns_popularity, shown_columns_revision,
|
| 276 |
+
filter_columns_type, filter_columns_precision,
|
| 277 |
+
filter_columns_size, deleted_models_visibility
|
| 278 |
+
]:
|
| 279 |
selector.change(
|
| 280 |
update_table,
|
| 281 |
+
inputs=[
|
| 282 |
hidden_leaderboard_table_for_search,
|
| 283 |
+
shown_columns_info,
|
| 284 |
+
shown_columns_eval,
|
| 285 |
+
shown_columns_metadata,
|
| 286 |
+
shown_columns_popularity,
|
| 287 |
+
shown_columns_revision,
|
| 288 |
filter_columns_type,
|
| 289 |
filter_columns_precision,
|
| 290 |
filter_columns_size,
|
| 291 |
deleted_models_visibility,
|
| 292 |
search_bar,
|
| 293 |
],
|
| 294 |
+
outputs=leaderboard_table,
|
| 295 |
queue=True,
|
| 296 |
)
|
| 297 |
|
|
|
|
| 309 |
open=False,
|
| 310 |
):
|
| 311 |
with gr.Row():
|
| 312 |
+
finished_eval_table = gr.Dataframe(
|
| 313 |
value=finished_eval_queue_df,
|
| 314 |
headers=EVAL_COLS,
|
| 315 |
datatype=EVAL_TYPES,
|
|
|
|
| 320 |
open=False,
|
| 321 |
):
|
| 322 |
with gr.Row():
|
| 323 |
+
running_eval_table = gr.Dataframe(
|
| 324 |
value=running_eval_queue_df,
|
| 325 |
headers=EVAL_COLS,
|
| 326 |
datatype=EVAL_TYPES,
|
|
|
|
| 332 |
open=False,
|
| 333 |
):
|
| 334 |
with gr.Row():
|
| 335 |
+
pending_eval_table = gr.Dataframe(
|
| 336 |
value=pending_eval_queue_df,
|
| 337 |
headers=EVAL_COLS,
|
| 338 |
datatype=EVAL_TYPES,
|
|
|
|
| 398 |
scheduler = BackgroundScheduler()
|
| 399 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 400 |
scheduler.start()
|
| 401 |
+
demo.queue(default_concurrency_limit=40).launch()
|
src/display/utils.py
CHANGED
|
@@ -17,30 +17,38 @@ class ColumnContent:
|
|
| 17 |
name: str
|
| 18 |
type: str
|
| 19 |
displayed_by_default: bool
|
|
|
|
| 20 |
hidden: bool = False
|
| 21 |
never_hidden: bool = False
|
| 22 |
|
| 23 |
## Leaderboard columns
|
| 24 |
auto_eval_column_dict = []
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
auto_eval_column_dict.append(["
|
| 28 |
-
|
| 29 |
-
auto_eval_column_dict.append(["
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
for task in Tasks:
|
| 31 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
auto_eval_column_dict.append(["
|
| 35 |
-
auto_eval_column_dict.append(["
|
| 36 |
-
auto_eval_column_dict.append(["
|
| 37 |
-
auto_eval_column_dict.append(["
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
auto_eval_column_dict.append(["
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
| 44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 45 |
|
| 46 |
## For the queue columns in the submission tab
|
|
|
|
| 17 |
name: str
|
| 18 |
type: str
|
| 19 |
displayed_by_default: bool
|
| 20 |
+
category: str = "" # New attribute to hold the category
|
| 21 |
hidden: bool = False
|
| 22 |
never_hidden: bool = False
|
| 23 |
|
| 24 |
## Leaderboard columns
|
| 25 |
auto_eval_column_dict = []
|
| 26 |
+
|
| 27 |
+
# Model Information
|
| 28 |
+
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, category="Model Information", never_hidden=True)])
|
| 29 |
+
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, category="Model Information", never_hidden=True)])
|
| 30 |
+
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, category="Model Information")])
|
| 31 |
+
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False, category="Model Information")])
|
| 32 |
+
|
| 33 |
+
# Evaluation Scores
|
| 34 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True, category="Evaluation Scores")])
|
| 35 |
for task in Tasks:
|
| 36 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, category="Evaluation Scores")])
|
| 37 |
+
|
| 38 |
+
# Model Metadata
|
| 39 |
+
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, category="Model Metadata", hidden=True)])
|
| 40 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, category="Model Metadata")])
|
| 41 |
+
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False, category="Model Metadata")])
|
| 42 |
+
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False, category="Model Metadata")])
|
| 43 |
+
|
| 44 |
+
# Popularity Metrics
|
| 45 |
+
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False, category="Popularity Metrics")])
|
| 46 |
+
|
| 47 |
+
# Revision and Availability
|
| 48 |
+
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, category="Revision and Availability")])
|
| 49 |
+
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, category="Revision and Availability", hidden=False)])
|
| 50 |
+
|
| 51 |
+
# We use make_dataclass to dynamically fill the scores from Tasks
|
| 52 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 53 |
|
| 54 |
## For the queue columns in the submission tab
|