Spaces:
Running
Running
| import gradio as gr | |
| from gradio_webrtc import WebRTC, ReplyOnPause, AdditionalOutputs | |
| import anthropic | |
| from pyht import Client as PyHtClient, TTSOptions | |
| import dataclasses | |
| import os | |
| import numpy as np | |
| from huggingface_hub import InferenceClient | |
| import io | |
| from pydub import AudioSegment | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| account_sid = os.environ.get("TWILIO_ACCOUNT_SID") | |
| auth_token = os.environ.get("TWILIO_AUTH_TOKEN") | |
| if account_sid and auth_token: | |
| from twilio.rest import Client | |
| client = Client(account_sid, auth_token) | |
| token = client.tokens.create() | |
| rtc_configuration = { | |
| "iceServers": token.ice_servers, | |
| "iceTransportPolicy": "relay", | |
| } | |
| else: | |
| rtc_configuration = None | |
| class Clients: | |
| claude: anthropic.Anthropic | |
| play_ht: PyHtClient | |
| hf: InferenceClient | |
| tts_options = TTSOptions(voice="s3://voice-cloning-zero-shot/775ae416-49bb-4fb6-bd45-740f205d20a1/jennifersaad/manifest.json", | |
| sample_rate=24000) | |
| def aggregate_chunks(chunks_iterator): | |
| leftover = b'' # Store incomplete bytes between chunks | |
| for chunk in chunks_iterator: | |
| # Combine with any leftover bytes from previous chunk | |
| current_bytes = leftover + chunk | |
| # Calculate complete samples | |
| n_complete_samples = len(current_bytes) // 2 # int16 = 2 bytes | |
| bytes_to_process = n_complete_samples * 2 | |
| # Split into complete samples and leftover | |
| to_process = current_bytes[:bytes_to_process] | |
| leftover = current_bytes[bytes_to_process:] | |
| if to_process: # Only yield if we have complete samples | |
| audio_array = np.frombuffer(to_process, dtype=np.int16).reshape(1, -1) | |
| yield audio_array | |
| def audio_to_bytes(audio: tuple[int, np.ndarray]) -> bytes: | |
| audio_buffer = io.BytesIO() | |
| segment = AudioSegment( | |
| audio[1].tobytes(), | |
| frame_rate=audio[0], | |
| sample_width=audio[1].dtype.itemsize, | |
| channels=1, | |
| ) | |
| segment.export(audio_buffer, format="mp3") | |
| return audio_buffer.getvalue() | |
| def set_api_key(claude_key, play_ht_username, play_ht_key): | |
| try: | |
| claude_client = anthropic.Anthropic(api_key=claude_key) | |
| play_ht_client = PyHtClient(user_id=play_ht_username, api_key=play_ht_key) | |
| except: | |
| raise gr.Error("Invalid API keys. Please try again.") | |
| gr.Info("Successfully set API keys.", duration=3) | |
| return Clients(claude=claude_client, play_ht=play_ht_client, | |
| hf=InferenceClient()), gr.skip() | |
| def response(audio: tuple[int, np.ndarray], conversation_llm_format: list[dict], | |
| chatbot: list[dict], client_state: Clients): | |
| if not client_state: | |
| raise gr.Error("Please set your API keys first.") | |
| prompt = client_state.hf.automatic_speech_recognition(audio_to_bytes(audio)).text | |
| conversation_llm_format.append({"role": "user", "content": prompt}) | |
| response = client_state.claude.messages.create( | |
| model="claude-3-5-haiku-20241022", | |
| max_tokens=512, | |
| messages=conversation_llm_format, | |
| ) | |
| response_text = " ".join(block.text for block in response.content if getattr(block, "type", None) == "text") | |
| conversation_llm_format.append({"role": "assistant", "content": response_text}) | |
| chatbot.append({"role": "user", "content": prompt}) | |
| chatbot.append({"role": "assistant", "content": response_text}) | |
| yield AdditionalOutputs(conversation_llm_format, chatbot) | |
| iterator = client_state.play_ht.tts(response_text, options=tts_options, voice_engine="Play3.0") | |
| for chunk in aggregate_chunks(iterator): | |
| audio_array = np.frombuffer(chunk, dtype=np.int16).reshape(1, -1) | |
| yield (24000, audio_array, "mono") | |
| with gr.Blocks() as demo: | |
| with gr.Group(): | |
| with gr.Row(): | |
| chatbot = gr.Chatbot(label="Conversation", type="messages") | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| claude_key = gr.Textbox(type="password", value=os.getenv("ANTHROPIC_API_KEY"), | |
| label="Enter your Anthropic API Key") | |
| play_ht_username = gr.Textbox(type="password", | |
| value=os.getenv("PLAY_HT_USER_ID"), | |
| label="Enter your PlayHt Username") | |
| play_ht_key = gr.Textbox(type="password", | |
| value=os.getenv("PLAY_HT_API_KEY"), | |
| label="Enter your PlayHt API Key") | |
| with gr.Row(): | |
| set_key_button = gr.Button("Set Keys", variant="primary") | |
| with gr.Column(scale=5): | |
| audio = WebRTC(modality="audio", mode="send-receive", | |
| label="Audio Stream", | |
| rtc_configuration=rtc_configuration) | |
| client_state = gr.State(None) | |
| conversation_llm_format = gr.State([]) | |
| set_key_button.click(set_api_key, inputs=[claude_key, play_ht_username, play_ht_key], | |
| outputs=[client_state, set_key_button]) | |
| audio.stream( | |
| ReplyOnPause(response), | |
| inputs=[audio, conversation_llm_format, chatbot, client_state], | |
| outputs=[audio] | |
| ) | |
| audio.on_additional_outputs(lambda l, g: (l, g), outputs=[conversation_llm_format, chatbot]) | |
| if __name__ == "__main__": | |
| demo.launch() |