Spaces:
Sleeping
Sleeping
Add stance analysis integration
Browse files- Integrate KoBERT stance classifier (gaaahee/political-news-stance-classifier)
- Update /batch-process-articles to include stance analysis
- Add huggingface-hub dependency
- Support 3-in-1 pipeline: Summary + Embedding + Stance
- requirements.txt +1 -0
- src/api/main.py +47 -7
- src/models/stance_classifier.py +250 -0
- test_stance_integration.py +173 -0
requirements.txt
CHANGED
|
@@ -7,6 +7,7 @@ sentencepiece==0.2.0
|
|
| 7 |
sentence-transformers==3.3.1
|
| 8 |
python-dotenv==1.0.1
|
| 9 |
keybert==0.8.5
|
|
|
|
| 10 |
|
| 11 |
# BERTopic Clustering & Visualization
|
| 12 |
bertopic==0.17.3
|
|
|
|
| 7 |
sentence-transformers==3.3.1
|
| 8 |
python-dotenv==1.0.1
|
| 9 |
keybert==0.8.5
|
| 10 |
+
huggingface-hub>=0.20.0
|
| 11 |
|
| 12 |
# BERTopic Clustering & Visualization
|
| 13 |
bertopic==0.17.3
|
src/api/main.py
CHANGED
|
@@ -21,6 +21,7 @@ from src.api.schemas import (
|
|
| 21 |
)
|
| 22 |
from src.models.summarizer import KoBARTSummarizer
|
| 23 |
from src.models.embedding import KoSentenceEmbedder
|
|
|
|
| 24 |
from src.utils.config import settings
|
| 25 |
from src.utils.logger import setup_logger
|
| 26 |
from src.utils.validation import validate_models_loaded, validate_batch_size
|
|
@@ -31,6 +32,7 @@ logger = setup_logger()
|
|
| 31 |
# Global model instances
|
| 32 |
summarizer: KoBARTSummarizer = None
|
| 33 |
embedder: KoSentenceEmbedder = None
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
@asynccontextmanager
|
|
@@ -39,12 +41,13 @@ async def lifespan(app: FastAPI):
|
|
| 39 |
Application lifespan context manager
|
| 40 |
Load models on startup, cleanup on shutdown
|
| 41 |
"""
|
| 42 |
-
global summarizer, embedder
|
| 43 |
|
| 44 |
# Startup: Load models
|
| 45 |
logger.info("Starting AI Processing Service...")
|
| 46 |
logger.info(f"Summarization Model: {settings.MODEL_NAME}")
|
| 47 |
logger.info(f"Embedding Model: jhgan/ko-sroberta-multitask")
|
|
|
|
| 48 |
logger.info(f"Max batch size: {settings.MAX_BATCH_SIZE}")
|
| 49 |
|
| 50 |
try:
|
|
@@ -56,6 +59,12 @@ async def lifespan(app: FastAPI):
|
|
| 56 |
embedder = KoSentenceEmbedder()
|
| 57 |
logger.info("β Embedding model loaded successfully (768-dim)")
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
logger.info("All models ready!")
|
| 60 |
except Exception as e:
|
| 61 |
logger.error(f"Failed to load models: {e}")
|
|
@@ -93,7 +102,7 @@ async def root():
|
|
| 93 |
"version": "1.0.0",
|
| 94 |
"endpoints": {
|
| 95 |
"health": "/health",
|
| 96 |
-
"process": "/batch-process-articles (summary + embedding)",
|
| 97 |
"summarize": "/batch-summarize (legacy)",
|
| 98 |
"cluster": "/cluster-topics (BERTopic clustering - CustomTokenizer)",
|
| 99 |
"cluster_mecab": "/cluster-topics-mecab (BERTopic clustering - Mecab)",
|
|
@@ -117,7 +126,7 @@ async def health_check():
|
|
| 117 |
status="healthy",
|
| 118 |
summarization_model=summarizer.model_name,
|
| 119 |
embedding_model=embedder.model_name,
|
| 120 |
-
stance_model=
|
| 121 |
device=summarizer.device
|
| 122 |
)
|
| 123 |
|
|
@@ -199,13 +208,13 @@ async def batch_process_articles(request: BatchProcessRequest):
|
|
| 199 |
Processing Pipeline:
|
| 200 |
1. Content β Summary (KoBART)
|
| 201 |
2. Title + Summary β Embedding (ko-sroberta-multitask, 768-dim) β
|
| 202 |
-
3. Summary β Stance (
|
| 203 |
|
| 204 |
Args:
|
| 205 |
request: BatchProcessRequest with list of articles
|
| 206 |
|
| 207 |
Returns:
|
| 208 |
-
BatchProcessResponse with summaries, embeddings, and
|
| 209 |
|
| 210 |
Raises:
|
| 211 |
HTTPException: If models not loaded or batch size exceeded
|
|
@@ -301,8 +310,39 @@ async def batch_process_articles(request: BatchProcessRequest):
|
|
| 301 |
logger.error(f"Batch embedding failed: {e}")
|
| 302 |
# Embeddings will remain None for failed articles
|
| 303 |
|
| 304 |
-
# Step 3: Stance analysis (
|
| 305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
# Calculate statistics
|
| 308 |
successful = sum(1 for r in results if r.error is None)
|
|
|
|
| 21 |
)
|
| 22 |
from src.models.summarizer import KoBARTSummarizer
|
| 23 |
from src.models.embedding import KoSentenceEmbedder
|
| 24 |
+
from src.models.stance_classifier import KoBERTStanceAnalyzer
|
| 25 |
from src.utils.config import settings
|
| 26 |
from src.utils.logger import setup_logger
|
| 27 |
from src.utils.validation import validate_models_loaded, validate_batch_size
|
|
|
|
| 32 |
# Global model instances
|
| 33 |
summarizer: KoBARTSummarizer = None
|
| 34 |
embedder: KoSentenceEmbedder = None
|
| 35 |
+
stance_analyzer: KoBERTStanceAnalyzer = None
|
| 36 |
|
| 37 |
|
| 38 |
@asynccontextmanager
|
|
|
|
| 41 |
Application lifespan context manager
|
| 42 |
Load models on startup, cleanup on shutdown
|
| 43 |
"""
|
| 44 |
+
global summarizer, embedder, stance_analyzer
|
| 45 |
|
| 46 |
# Startup: Load models
|
| 47 |
logger.info("Starting AI Processing Service...")
|
| 48 |
logger.info(f"Summarization Model: {settings.MODEL_NAME}")
|
| 49 |
logger.info(f"Embedding Model: jhgan/ko-sroberta-multitask")
|
| 50 |
+
logger.info(f"Stance Model: gaaahee/political-news-stance-classifier")
|
| 51 |
logger.info(f"Max batch size: {settings.MAX_BATCH_SIZE}")
|
| 52 |
|
| 53 |
try:
|
|
|
|
| 59 |
embedder = KoSentenceEmbedder()
|
| 60 |
logger.info("β Embedding model loaded successfully (768-dim)")
|
| 61 |
|
| 62 |
+
# Load stance analysis model
|
| 63 |
+
stance_analyzer = KoBERTStanceAnalyzer(
|
| 64 |
+
repo_id="gaaahee/political-news-stance-classifier"
|
| 65 |
+
)
|
| 66 |
+
logger.info("β Stance analysis model loaded successfully")
|
| 67 |
+
|
| 68 |
logger.info("All models ready!")
|
| 69 |
except Exception as e:
|
| 70 |
logger.error(f"Failed to load models: {e}")
|
|
|
|
| 102 |
"version": "1.0.0",
|
| 103 |
"endpoints": {
|
| 104 |
"health": "/health",
|
| 105 |
+
"process": "/batch-process-articles (summary + embedding + stance)",
|
| 106 |
"summarize": "/batch-summarize (legacy)",
|
| 107 |
"cluster": "/cluster-topics (BERTopic clustering - CustomTokenizer)",
|
| 108 |
"cluster_mecab": "/cluster-topics-mecab (BERTopic clustering - Mecab)",
|
|
|
|
| 126 |
status="healthy",
|
| 127 |
summarization_model=summarizer.model_name,
|
| 128 |
embedding_model=embedder.model_name,
|
| 129 |
+
stance_model=stance_analyzer.model_name if stance_analyzer else None,
|
| 130 |
device=summarizer.device
|
| 131 |
)
|
| 132 |
|
|
|
|
| 208 |
Processing Pipeline:
|
| 209 |
1. Content β Summary (KoBART)
|
| 210 |
2. Title + Summary β Embedding (ko-sroberta-multitask, 768-dim) β
|
| 211 |
+
3. Summary β Stance (KoBERT fine-tuned, support/neutral/oppose) β
|
| 212 |
|
| 213 |
Args:
|
| 214 |
request: BatchProcessRequest with list of articles
|
| 215 |
|
| 216 |
Returns:
|
| 217 |
+
BatchProcessResponse with summaries, embeddings, and stance results
|
| 218 |
|
| 219 |
Raises:
|
| 220 |
HTTPException: If models not loaded or batch size exceeded
|
|
|
|
| 310 |
logger.error(f"Batch embedding failed: {e}")
|
| 311 |
# Embeddings will remain None for failed articles
|
| 312 |
|
| 313 |
+
# Step 3: Stance analysis (KoBERT fine-tuned model)
|
| 314 |
+
if stance_analyzer:
|
| 315 |
+
try:
|
| 316 |
+
# Collect summaries for stance analysis (only successful summaries)
|
| 317 |
+
summaries_for_stance = []
|
| 318 |
+
stance_indices = []
|
| 319 |
+
|
| 320 |
+
for idx, result in enumerate(results):
|
| 321 |
+
if result.summary and result.error is None:
|
| 322 |
+
summaries_for_stance.append(result.summary)
|
| 323 |
+
stance_indices.append(idx)
|
| 324 |
+
|
| 325 |
+
if summaries_for_stance:
|
| 326 |
+
logger.info(f"Analyzing stance for {len(summaries_for_stance)} summaries")
|
| 327 |
+
|
| 328 |
+
# Batch stance analysis
|
| 329 |
+
stance_results = stance_analyzer.analyze_batch(
|
| 330 |
+
summaries_for_stance,
|
| 331 |
+
batch_size=16
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
# Map stance results back to results
|
| 335 |
+
for idx, stance_result in zip(stance_indices, stance_results):
|
| 336 |
+
from src.api.schemas import StanceResult
|
| 337 |
+
results[idx].stance = StanceResult(**stance_result)
|
| 338 |
+
|
| 339 |
+
logger.info(f"β Stance analysis completed for {len(stance_results)} articles")
|
| 340 |
+
|
| 341 |
+
except Exception as e:
|
| 342 |
+
logger.error(f"Stance analysis failed: {e}")
|
| 343 |
+
# Stance will remain None for failed articles
|
| 344 |
+
else:
|
| 345 |
+
logger.warning("Stance analyzer not available, skipping stance analysis")
|
| 346 |
|
| 347 |
# Calculate statistics
|
| 348 |
successful = sum(1 for r in results if r.error is None)
|
src/models/stance_classifier.py
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
KoBERT-based Stance Classifier for Korean Political News
|
| 3 |
+
|
| 4 |
+
Loads fine-tuned stance classification model from HuggingFace Hub.
|
| 5 |
+
Model classifies news text into 3 stances: support/neutral/oppose
|
| 6 |
+
"""
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from transformers import BertModel, AutoTokenizer
|
| 10 |
+
from huggingface_hub import hf_hub_download
|
| 11 |
+
import logging
|
| 12 |
+
from typing import List, Dict, Optional
|
| 13 |
+
import json
|
| 14 |
+
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class StanceClassifier(nn.Module):
|
| 19 |
+
"""KoBERT-based stance classification model"""
|
| 20 |
+
|
| 21 |
+
def __init__(self, n_classes=3, dropout=0.3, model_name="skt/kobert-base-v1"):
|
| 22 |
+
super(StanceClassifier, self).__init__()
|
| 23 |
+
self.bert = BertModel.from_pretrained(model_name)
|
| 24 |
+
self.dropout = nn.Dropout(dropout)
|
| 25 |
+
self.classifier = nn.Linear(self.bert.config.hidden_size, n_classes)
|
| 26 |
+
|
| 27 |
+
def forward(self, input_ids, attention_mask):
|
| 28 |
+
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
| 29 |
+
pooled_output = outputs.pooler_output
|
| 30 |
+
pooled_output = self.dropout(pooled_output)
|
| 31 |
+
return self.classifier(pooled_output)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class KoBERTStanceAnalyzer:
|
| 35 |
+
"""
|
| 36 |
+
KoBERT-based stance analyzer for Korean political news
|
| 37 |
+
|
| 38 |
+
Loads model from HuggingFace Hub (gaaahee/political-news-stance-classifier)
|
| 39 |
+
and performs stance classification on article summaries.
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
def __init__(
|
| 43 |
+
self,
|
| 44 |
+
repo_id: str = "gaaahee/political-news-stance-classifier",
|
| 45 |
+
device: Optional[str] = None
|
| 46 |
+
):
|
| 47 |
+
"""
|
| 48 |
+
Initialize stance analyzer
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
repo_id: HuggingFace Hub repository ID
|
| 52 |
+
device: Device to run model on (cpu/cuda). Auto-detects if None.
|
| 53 |
+
"""
|
| 54 |
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
| 55 |
+
self.repo_id = repo_id
|
| 56 |
+
self.label_names = ["μΉνΈ", "μ€λ¦½", "λΉν"]
|
| 57 |
+
self.label_names_en = ["support", "neutral", "oppose"]
|
| 58 |
+
|
| 59 |
+
# Model metadata (will be loaded from config.json)
|
| 60 |
+
self.model_name = "KoBERT Stance Classifier"
|
| 61 |
+
self.base_model = "skt/kobert-base-v1"
|
| 62 |
+
self.tokenizer_name = "monologg/kobert"
|
| 63 |
+
self.num_labels = 3
|
| 64 |
+
self.max_length = 512
|
| 65 |
+
self.dropout = 0.3
|
| 66 |
+
|
| 67 |
+
# Load model components from HF Hub
|
| 68 |
+
self._load_model()
|
| 69 |
+
logger.info(f"β Stance model loaded from {repo_id} on {self.device}")
|
| 70 |
+
|
| 71 |
+
def _load_model(self):
|
| 72 |
+
"""Load tokenizer and model from HuggingFace Hub"""
|
| 73 |
+
try:
|
| 74 |
+
# Load config from HF Hub
|
| 75 |
+
logger.info(f"Downloading config from {self.repo_id}")
|
| 76 |
+
config_path = hf_hub_download(self.repo_id, "config.json")
|
| 77 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
| 78 |
+
config = json.load(f)
|
| 79 |
+
|
| 80 |
+
# Update model metadata from config
|
| 81 |
+
self.base_model = config.get("base_model", "skt/kobert-base-v1")
|
| 82 |
+
self.tokenizer_name = config.get("tokenizer", "monologg/kobert")
|
| 83 |
+
self.num_labels = config.get("num_labels", 3)
|
| 84 |
+
self.max_length = config.get("max_length", 512)
|
| 85 |
+
self.dropout = config.get("dropout", 0.3)
|
| 86 |
+
|
| 87 |
+
# Load tokenizer (must use monologg/kobert for compatibility)
|
| 88 |
+
logger.info(f"Loading tokenizer: {self.tokenizer_name}")
|
| 89 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 90 |
+
self.tokenizer_name,
|
| 91 |
+
trust_remote_code=True
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Initialize model architecture
|
| 95 |
+
logger.info(f"Initializing model architecture: {self.base_model}")
|
| 96 |
+
self.model = StanceClassifier(
|
| 97 |
+
n_classes=self.num_labels,
|
| 98 |
+
dropout=self.dropout,
|
| 99 |
+
model_name=self.base_model
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Download and load fine-tuned weights from HF Hub
|
| 103 |
+
logger.info(f"Downloading model weights from {self.repo_id}")
|
| 104 |
+
model_path = hf_hub_download(self.repo_id, "model.pth")
|
| 105 |
+
state_dict = torch.load(model_path, map_location=self.device)
|
| 106 |
+
self.model.load_state_dict(state_dict)
|
| 107 |
+
|
| 108 |
+
# Move to device and set to eval mode
|
| 109 |
+
self.model.to(self.device)
|
| 110 |
+
self.model.eval()
|
| 111 |
+
|
| 112 |
+
logger.info(f"β Model loaded successfully (Test Accuracy: {config.get('test_accuracy', 'N/A')})")
|
| 113 |
+
|
| 114 |
+
except Exception as e:
|
| 115 |
+
logger.error(f"Failed to load stance model from HF Hub: {e}")
|
| 116 |
+
raise
|
| 117 |
+
|
| 118 |
+
def predict_single(self, text: str) -> Dict:
|
| 119 |
+
"""
|
| 120 |
+
Predict stance for a single text
|
| 121 |
+
|
| 122 |
+
Args:
|
| 123 |
+
text: Article summary to analyze
|
| 124 |
+
|
| 125 |
+
Returns:
|
| 126 |
+
Dict with stance, confidence, and probabilities
|
| 127 |
+
"""
|
| 128 |
+
inputs = self.tokenizer(
|
| 129 |
+
text,
|
| 130 |
+
return_tensors="pt",
|
| 131 |
+
max_length=self.max_length,
|
| 132 |
+
truncation=True,
|
| 133 |
+
padding="max_length"
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
input_ids = inputs["input_ids"].to(self.device)
|
| 137 |
+
attention_mask = inputs["attention_mask"].to(self.device)
|
| 138 |
+
|
| 139 |
+
with torch.no_grad():
|
| 140 |
+
outputs = self.model(input_ids, attention_mask)
|
| 141 |
+
probs = torch.softmax(outputs, dim=1)[0]
|
| 142 |
+
pred = torch.argmax(probs).item()
|
| 143 |
+
|
| 144 |
+
return {
|
| 145 |
+
"stance": self.label_names_en[pred],
|
| 146 |
+
"stance_kr": self.label_names[pred],
|
| 147 |
+
"confidence": round(probs[pred].item(), 4),
|
| 148 |
+
"probabilities": {
|
| 149 |
+
"support": round(probs[0].item(), 4),
|
| 150 |
+
"neutral": round(probs[1].item(), 4),
|
| 151 |
+
"oppose": round(probs[2].item(), 4)
|
| 152 |
+
}
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
def predict_batch(self, texts: List[str], batch_size: int = 16) -> List[Dict]:
|
| 156 |
+
"""
|
| 157 |
+
Predict stance for multiple texts in batches
|
| 158 |
+
|
| 159 |
+
Args:
|
| 160 |
+
texts: List of article summaries to analyze
|
| 161 |
+
batch_size: Batch size for processing
|
| 162 |
+
|
| 163 |
+
Returns:
|
| 164 |
+
List of stance prediction results
|
| 165 |
+
"""
|
| 166 |
+
results = []
|
| 167 |
+
|
| 168 |
+
for i in range(0, len(texts), batch_size):
|
| 169 |
+
batch = texts[i:i + batch_size]
|
| 170 |
+
inputs = self.tokenizer(
|
| 171 |
+
batch,
|
| 172 |
+
return_tensors="pt",
|
| 173 |
+
max_length=self.max_length,
|
| 174 |
+
truncation=True,
|
| 175 |
+
padding="max_length"
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
input_ids = inputs["input_ids"].to(self.device)
|
| 179 |
+
attention_mask = inputs["attention_mask"].to(self.device)
|
| 180 |
+
|
| 181 |
+
with torch.no_grad():
|
| 182 |
+
outputs = self.model(input_ids, attention_mask)
|
| 183 |
+
probs = torch.softmax(outputs, dim=1)
|
| 184 |
+
|
| 185 |
+
for j in range(len(batch)):
|
| 186 |
+
pred = torch.argmax(probs[j]).item()
|
| 187 |
+
results.append({
|
| 188 |
+
"stance": self.label_names_en[pred],
|
| 189 |
+
"stance_kr": self.label_names[pred],
|
| 190 |
+
"confidence": round(probs[j][pred].item(), 4),
|
| 191 |
+
"probabilities": {
|
| 192 |
+
"support": round(probs[j][0].item(), 4),
|
| 193 |
+
"neutral": round(probs[j][1].item(), 4),
|
| 194 |
+
"oppose": round(probs[j][2].item(), 4)
|
| 195 |
+
}
|
| 196 |
+
})
|
| 197 |
+
|
| 198 |
+
return results
|
| 199 |
+
|
| 200 |
+
def analyze_stance(self, summary: str) -> Dict:
|
| 201 |
+
"""
|
| 202 |
+
Analyze stance from article summary
|
| 203 |
+
|
| 204 |
+
Args:
|
| 205 |
+
summary: Article summary text
|
| 206 |
+
|
| 207 |
+
Returns:
|
| 208 |
+
Dict compatible with StanceResult schema:
|
| 209 |
+
{
|
| 210 |
+
"stance_label": "support" | "neutral" | "oppose",
|
| 211 |
+
"prob_positive": float, # support probability
|
| 212 |
+
"prob_neutral": float,
|
| 213 |
+
"prob_negative": float, # oppose probability
|
| 214 |
+
"stance_score": float # prob_positive - prob_negative
|
| 215 |
+
}
|
| 216 |
+
"""
|
| 217 |
+
result = self.predict_single(summary)
|
| 218 |
+
probs = result["probabilities"]
|
| 219 |
+
|
| 220 |
+
return {
|
| 221 |
+
"stance_label": result["stance"],
|
| 222 |
+
"prob_positive": probs["support"],
|
| 223 |
+
"prob_neutral": probs["neutral"],
|
| 224 |
+
"prob_negative": probs["oppose"],
|
| 225 |
+
"stance_score": probs["support"] - probs["oppose"]
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
def analyze_batch(self, summaries: List[str], batch_size: int = 16) -> List[Dict]:
|
| 229 |
+
"""
|
| 230 |
+
Analyze stance for multiple summaries
|
| 231 |
+
|
| 232 |
+
Args:
|
| 233 |
+
summaries: List of article summaries
|
| 234 |
+
batch_size: Batch size for processing
|
| 235 |
+
|
| 236 |
+
Returns:
|
| 237 |
+
List of stance results compatible with StanceResult schema
|
| 238 |
+
"""
|
| 239 |
+
results = self.predict_batch(summaries, batch_size=batch_size)
|
| 240 |
+
|
| 241 |
+
return [
|
| 242 |
+
{
|
| 243 |
+
"stance_label": r["stance"],
|
| 244 |
+
"prob_positive": r["probabilities"]["support"],
|
| 245 |
+
"prob_neutral": r["probabilities"]["neutral"],
|
| 246 |
+
"prob_negative": r["probabilities"]["oppose"],
|
| 247 |
+
"stance_score": r["probabilities"]["support"] - r["probabilities"]["oppose"]
|
| 248 |
+
}
|
| 249 |
+
for r in results
|
| 250 |
+
]
|
test_stance_integration.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Test script for stance analysis integration
|
| 3 |
+
|
| 4 |
+
Tests the complete pipeline:
|
| 5 |
+
1. Summary generation
|
| 6 |
+
2. Embedding generation
|
| 7 |
+
3. Stance analysis
|
| 8 |
+
"""
|
| 9 |
+
import requests
|
| 10 |
+
import json
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def test_batch_process_with_stance():
|
| 14 |
+
"""Test /batch-process-articles endpoint with stance analysis"""
|
| 15 |
+
|
| 16 |
+
# Test data: Korean political news articles
|
| 17 |
+
test_articles = [
|
| 18 |
+
{
|
| 19 |
+
"article_id": 1,
|
| 20 |
+
"title": "μ λΆ λΆλμ° κ·μ μν",
|
| 21 |
+
"content": "μ λΆκ° μ€λ λΆλμ° κ·μ μν λ°©μμ λ°ννλ€. μ΄λ² μ‘°μΉλ‘ μ£Όν κ΅¬λ§€κ° λ μ¬μμ§ μ λ§μ΄λ€. "
|
| 22 |
+
"μ λ¬Έκ°λ€μ μ΄λ² μ μ±
μ΄ κ²½μ νμ±νμ λμμ΄ λ κ²μΌλ‘ κΈ°λνκ³ μλ€."
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"article_id": 2,
|
| 26 |
+
"title": "μΌλΉ μ λΆ μ μ±
λΉν",
|
| 27 |
+
"content": "μΌλΉμ μ€λ μ λΆμ μ μ±
μ λν΄ κ°νκ² λΉννλ€. μΌλΉ λνλ μ΄λ² μ μ±
μ΄ μλ―Όλ€μκ² "
|
| 28 |
+
"λμμ΄ λμ§ μλλ€κ³ μ£Όμ₯νλ€. μΌλΉμ μ λΆκ° μ¬κ²ν ν΄μΌ νλ€κ³ μ΄κ΅¬νλ€."
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"article_id": 3,
|
| 32 |
+
"title": "κ΅ν λ²μ μ¬μ",
|
| 33 |
+
"content": "κ΅νμμ μ€λ λ²μ μ¬μκ° μ§νλμλ€. μ¬μΌ μμλ€μ΄ μ°Έμν κ°μ΄λ° λ€μν μκ²¬μ΄ "
|
| 34 |
+
"μ μλμλ€. λ²μμ λ€μ μ£Ό λ³Ένμμ μμ λ μμ μ΄λ€."
|
| 35 |
+
}
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
# API endpoint
|
| 39 |
+
url = "http://localhost:7860/batch-process-articles"
|
| 40 |
+
|
| 41 |
+
# Request payload
|
| 42 |
+
payload = {
|
| 43 |
+
"articles": test_articles,
|
| 44 |
+
"max_summary_length": 300,
|
| 45 |
+
"min_summary_length": 150
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
print("Testing /batch-process-articles endpoint...")
|
| 49 |
+
print(f"Sending {len(test_articles)} articles\n")
|
| 50 |
+
|
| 51 |
+
try:
|
| 52 |
+
# Send request
|
| 53 |
+
response = requests.post(url, json=payload, timeout=120)
|
| 54 |
+
response.raise_for_status()
|
| 55 |
+
|
| 56 |
+
# Parse response
|
| 57 |
+
result = response.json()
|
| 58 |
+
|
| 59 |
+
print("=" * 80)
|
| 60 |
+
print("RESPONSE SUMMARY")
|
| 61 |
+
print("=" * 80)
|
| 62 |
+
print(f"Total processed: {result['total_processed']}")
|
| 63 |
+
print(f"Successful: {result['successful']}")
|
| 64 |
+
print(f"Failed: {result['failed']}")
|
| 65 |
+
print(f"Processing time: {result['processing_time_seconds']:.2f}s")
|
| 66 |
+
print()
|
| 67 |
+
|
| 68 |
+
# Display results
|
| 69 |
+
for i, article_result in enumerate(result['results'], 1):
|
| 70 |
+
print("=" * 80)
|
| 71 |
+
print(f"ARTICLE {i}: {test_articles[i-1]['title']}")
|
| 72 |
+
print("=" * 80)
|
| 73 |
+
|
| 74 |
+
# Original content
|
| 75 |
+
print(f"\nOriginal (first 100 chars):")
|
| 76 |
+
print(f" {test_articles[i-1]['content'][:100]}...")
|
| 77 |
+
|
| 78 |
+
# Summary
|
| 79 |
+
if article_result['summary']:
|
| 80 |
+
print(f"\nSummary:")
|
| 81 |
+
print(f" {article_result['summary']}")
|
| 82 |
+
else:
|
| 83 |
+
print(f"\nSummary: FAILED - {article_result.get('error')}")
|
| 84 |
+
|
| 85 |
+
# Embedding
|
| 86 |
+
if article_result['embedding']:
|
| 87 |
+
print(f"\nEmbedding:")
|
| 88 |
+
print(f" Dimension: {len(article_result['embedding'])}")
|
| 89 |
+
print(f" First 5 values: {article_result['embedding'][:5]}")
|
| 90 |
+
else:
|
| 91 |
+
print(f"\nEmbedding: Not generated")
|
| 92 |
+
|
| 93 |
+
# Stance
|
| 94 |
+
if article_result['stance']:
|
| 95 |
+
stance = article_result['stance']
|
| 96 |
+
print(f"\nStance Analysis:")
|
| 97 |
+
print(f" Label: {stance['stance_label'].upper()}")
|
| 98 |
+
print(f" Score: {stance['stance_score']:.4f}")
|
| 99 |
+
print(f" Probabilities:")
|
| 100 |
+
print(f" - Support (μΉνΈ): {stance['prob_positive']:.4f}")
|
| 101 |
+
print(f" - Neutral (μ€λ¦½): {stance['prob_neutral']:.4f}")
|
| 102 |
+
print(f" - Oppose (λΉν): {stance['prob_negative']:.4f}")
|
| 103 |
+
else:
|
| 104 |
+
print(f"\nStance: Not analyzed")
|
| 105 |
+
|
| 106 |
+
print()
|
| 107 |
+
|
| 108 |
+
print("=" * 80)
|
| 109 |
+
print("TEST COMPLETED SUCCESSFULLY")
|
| 110 |
+
print("=" * 80)
|
| 111 |
+
|
| 112 |
+
except requests.exceptions.RequestException as e:
|
| 113 |
+
print(f"ERROR: Request failed")
|
| 114 |
+
print(f" {e}")
|
| 115 |
+
if hasattr(e.response, 'text'):
|
| 116 |
+
print(f" Response: {e.response.text}")
|
| 117 |
+
|
| 118 |
+
except Exception as e:
|
| 119 |
+
print(f"ERROR: {e}")
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def test_health_check():
|
| 123 |
+
"""Test /health endpoint to verify all models are loaded"""
|
| 124 |
+
|
| 125 |
+
url = "http://localhost:7860/health"
|
| 126 |
+
|
| 127 |
+
print("Testing /health endpoint...")
|
| 128 |
+
|
| 129 |
+
try:
|
| 130 |
+
response = requests.get(url, timeout=10)
|
| 131 |
+
response.raise_for_status()
|
| 132 |
+
|
| 133 |
+
result = response.json()
|
| 134 |
+
|
| 135 |
+
print("\n" + "=" * 80)
|
| 136 |
+
print("HEALTH CHECK")
|
| 137 |
+
print("=" * 80)
|
| 138 |
+
print(f"Status: {result['status']}")
|
| 139 |
+
print(f"Device: {result['device']}")
|
| 140 |
+
print(f"\nModels loaded:")
|
| 141 |
+
print(f" - Summarization: {result['summarization_model']}")
|
| 142 |
+
print(f" - Embedding: {result['embedding_model']}")
|
| 143 |
+
print(f" - Stance: {result['stance_model']}")
|
| 144 |
+
print("=" * 80)
|
| 145 |
+
print()
|
| 146 |
+
|
| 147 |
+
if result['stance_model'] is None:
|
| 148 |
+
print("WARNING: Stance model not loaded!")
|
| 149 |
+
return False
|
| 150 |
+
|
| 151 |
+
return True
|
| 152 |
+
|
| 153 |
+
except Exception as e:
|
| 154 |
+
print(f"ERROR: Health check failed - {e}")
|
| 155 |
+
return False
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
if __name__ == "__main__":
|
| 159 |
+
print("\n" + "=" * 80)
|
| 160 |
+
print("STANCE ANALYSIS INTEGRATION TEST")
|
| 161 |
+
print("=" * 80)
|
| 162 |
+
print()
|
| 163 |
+
|
| 164 |
+
# Step 1: Health check
|
| 165 |
+
if test_health_check():
|
| 166 |
+
print("\nβ Health check passed\n")
|
| 167 |
+
|
| 168 |
+
# Step 2: Test batch processing with stance
|
| 169 |
+
test_batch_process_with_stance()
|
| 170 |
+
else:
|
| 171 |
+
print("\nβ Health check failed - skipping batch test")
|
| 172 |
+
print("\nMake sure the API server is running:")
|
| 173 |
+
print(" python app.py")
|