Spaces:
Runtime error
Runtime error
| import spaces | |
| import argparse | |
| import os | |
| import time | |
| from os import path | |
| from safetensors.torch import load_file | |
| from huggingface_hub import hf_hub_download | |
| import gradio as gr | |
| import torch | |
| from diffusers import FluxPipeline | |
| # Setup and initialization code | |
| cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
| os.environ["TRANSFORMERS_CACHE"] = cache_path | |
| os.environ["HF_HUB_CACHE"] = cache_path | |
| os.environ["HF_HOME"] = cache_path | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| class timer: | |
| def __init__(self, method_name="timed process"): | |
| self.method = method_name | |
| def __enter__(self): | |
| self.start = time.time() | |
| print(f"{self.method} starts") | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| end = time.time() | |
| print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
| # Model initialization | |
| if not path.exists(cache_path): | |
| os.makedirs(cache_path, exist_ok=True) | |
| pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
| pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) | |
| pipe.fuse_lora(lora_scale=0.125) | |
| pipe.to(device="cuda", dtype=torch.bfloat16) | |
| # Custom CSS | |
| css = """ | |
| footer {display: none !important} | |
| .gradio-container {max-width: 1200px; margin: auto;} | |
| .contain {background: rgba(255, 255, 255, 0.05); border-radius: 12px; padding: 20px;} | |
| .generate-btn { | |
| background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; | |
| border: none !important; | |
| color: white !important; | |
| } | |
| .generate-btn:hover { | |
| transform: translateY(-2px); | |
| box-shadow: 0 5px 15px rgba(0,0,0,0.2); | |
| } | |
| .title { | |
| text-align: center; | |
| font-size: 2.5em; | |
| font-weight: bold; | |
| margin-bottom: 1em; | |
| background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); | |
| -webkit-background-clip: text; | |
| -webkit-text-fill-color: transparent; | |
| } | |
| """ | |
| # Create Gradio interface | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
| gr.HTML('<div class="title">AI Image Generator</div>') | |
| gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>') | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| prompt = gr.Textbox( | |
| label="Image Description", | |
| placeholder="Describe the image you want to create...", | |
| lines=3 | |
| ) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=1152, | |
| step=64, | |
| value=1024 | |
| ) | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=1152, | |
| step=64, | |
| value=1024 | |
| ) | |
| with gr.Row(): | |
| steps = gr.Slider( | |
| label="Inference Steps", | |
| minimum=6, | |
| maximum=25, | |
| step=1, | |
| value=8 | |
| ) | |
| scales = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.0, | |
| maximum=5.0, | |
| step=0.1, | |
| value=3.5 | |
| ) | |
| seed = gr.Number( | |
| label="Seed (for reproducibility)", | |
| value=3413, | |
| precision=0 | |
| ) | |
| generate_btn = gr.Button( | |
| "✨ Generate Image", | |
| elem_classes=["generate-btn"] | |
| ) | |
| gr.HTML(""" | |
| <div style="margin-top: 1em; padding: 1em; border-radius: 8px; background: rgba(255, 255, 255, 0.05);"> | |
| <h4 style="margin: 0 0 0.5em 0;">Tips for best results:</h4> | |
| <ul style="margin: 0; padding-left: 1.2em;"> | |
| <li>Be specific in your descriptions</li> | |
| <li>Include details about style, lighting, and mood</li> | |
| <li>Experiment with different guidance scales</li> | |
| </ul> | |
| </div> | |
| """) | |
| with gr.Column(scale=4): | |
| output = gr.Image(label="Generated Image") | |
| def process_image(height, width, steps, scales, prompt, seed): | |
| global pipe | |
| with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
| return pipe( | |
| prompt=[prompt], | |
| generator=torch.Generator().manual_seed(int(seed)), | |
| num_inference_steps=int(steps), | |
| guidance_scale=float(scales), | |
| height=int(height), | |
| width=int(width), | |
| max_sequence_length=256 | |
| ).images[0] | |
| generate_btn.click( | |
| process_image, | |
| inputs=[height, width, steps, scales, prompt, seed], | |
| outputs=output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |