Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,49 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoProcessor,
|
| 3 |
from PIL import Image
|
|
|
|
| 4 |
import torch
|
| 5 |
|
| 6 |
model_id = "google/medgemma-4b-it"
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
| 11 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def generate_report(image):
|
| 14 |
if image is None:
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 3 |
from PIL import Image
|
| 4 |
+
import requests
|
| 5 |
import torch
|
| 6 |
|
| 7 |
model_id = "google/medgemma-4b-it"
|
| 8 |
|
| 9 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
| 10 |
+
model_id,
|
| 11 |
+
torch_dtype=torch.bfloat16,
|
| 12 |
+
device_map="auto",
|
| 13 |
)
|
| 14 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 15 |
+
|
| 16 |
+
# Image attribution: Stillwaterising, CC0, via Wikimedia Commons
|
| 17 |
+
image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
|
| 18 |
+
image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
|
| 19 |
+
|
| 20 |
+
messages = [
|
| 21 |
+
{
|
| 22 |
+
"role": "system",
|
| 23 |
+
"content": [{"type": "text", "text": "You are an expert radiologist."}]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"role": "user",
|
| 27 |
+
"content": [
|
| 28 |
+
{"type": "text", "text": "Describe this X-ray"},
|
| 29 |
+
{"type": "image", "image": image}
|
| 30 |
+
]
|
| 31 |
+
}
|
| 32 |
+
]
|
| 33 |
+
|
| 34 |
+
inputs = processor.apply_chat_template(
|
| 35 |
+
messages, add_generation_prompt=True, tokenize=True,
|
| 36 |
+
return_dict=True, return_tensors="pt"
|
| 37 |
+
).to(model.device, dtype=torch.bfloat16)
|
| 38 |
+
|
| 39 |
+
input_len = inputs["input_ids"].shape[-1]
|
| 40 |
+
|
| 41 |
+
with torch.inference_mode():
|
| 42 |
+
generation = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
| 43 |
+
generation = generation[0][input_len:]
|
| 44 |
+
|
| 45 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
| 46 |
+
print(decoded)
|
| 47 |
|
| 48 |
def generate_report(image):
|
| 49 |
if image is None:
|