wanloratrainer-gui / wan_lora_trainer_gui.py
kundaja-green
Completely fresh repository upload
ebb79f2
raw
history blame
40.7 kB
import tkinter as tk
from tkinter import ttk, filedialog, messagebox, Menu
import subprocess
import threading
import json
import os
import sys
import signal
# Dark theme color scheme
BG_COLOR = "#2C3E50" # Main background (dark gray with blue tint)
FG_COLOR = "#ECF0F1" # Light text
ACCENT_COLOR = "#2980B9" # Blue accent for tabs
ENTRY_BG = "#1B2A38" # Entry field background (darker than main)
BUTTON_ACTIVE = "#1B2A38" # Active button background
BORDER_COLOR = "#333333" # Dark border color
ACTIVE_ENTRY_BG = "white" # Background color for active entry field
ACTIVE_ENTRY_FG = "black" # Text color for active entry field
class LoRATrainerGUI:
def __init__(self, master):
self.master = master
master.title("Wan 2.1 LoRA Trainer")
master.geometry("900x1024")
master.configure(bg=BG_COLOR)
self.current_process = None
self.training_thread = None
self.process_group_id = None
self.user_scrolled = False # Flag for manual console scrolling
# Initialize settings with default values, including conversion settings
self.settings = {
"DATASET_CONFIG": "dataset/dataset_example.toml",
"VAE_MODEL": "Models/Wan/Wan2.1_VAE.pth",
"CLIP_MODEL": "Models/Wan/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth",
"T5_MODEL": "Models/Wan/models_t5_umt5-xxl-enc-bf16.pth",
"DIT_MODEL": "Models/Wan/wan2.1_i2v_720p_14B_fp8_e4m3fn.safetensors",
"LORA_OUTPUT_DIR": "Output_LoRAs/",
"LORA_NAME": "My_Best_Lora_v1",
"MODEL_TYPE": "i2v-14B",
"FLOW_SHIFT": 3.0,
"LEARNING_RATE": 2e-5,
"LORA_LR_RATIO": 4,
"NETWORK_DIM": 32,
"NETWORK_ALPHA": 4,
"MAX_TRAIN_EPOCHS": 70,
"SAVE_EVERY_N_EPOCHS": 10,
"SEED": 1234,
"BLOCKS_SWAP": 16,
"RESUME_TRAINING": "",
"OPTIMIZER_TYPE": "adamw8bit",
"OPTIMIZER_ARGS": "",
"ATTENTION_MECHANISM": "none",
"LOGGING_DIR": "",
"LOG_WITH": "none",
"LOG_PREFIX": "",
"IMG_IN_TXT_IN_OFFLOADING": False,
"LR_SCHEDULER": "constant",
"LR_WARMUP_STEPS": "",
"LR_DECAY_STEPS": "",
"TIMESTEP_SAMPLING": "shift",
"DISCRETE_FLOW_SHIFT": "3.0",
"WEIGHTING_SCHEME": "none",
"METADATA_TITLE": "",
"METADATA_AUTHOR": "",
"METADATA_DESCRIPTION": "",
"METADATA_LICENSE": "",
"METADATA_TAGS": "",
"INPUT_LORA": "",
"OUTPUT_DIR": "",
"CONVERTED_LORA_NAME": "",
"FP8": True, # Default FP8 setting
"SCALED": False # Default Scaled setting
}
self.model_types = ["t2v-1.3B", "t2v-14B", "i2v-14B", "t2i-14B"]
self.optimizer_types = ["adamw", "adamw8bit", "adafactor", "torch.optim.AdamW", "bitsandbytes.optim.AdEMAMix8bit", "bitsandbytes.optim.PagedAdEMAMix8bit", "came"]
self.setup_styles()
# Create notebook and tabs
self.notebook = ttk.Notebook(master)
self.notebook.pack(fill=tk.BOTH, expand=True, padx=10, pady=10)
# Создание вкладок с привязкой события клика мыши
self.training_tab = ttk.Frame(self.notebook)
self.training_tab.bind("<Button-1>", self.remove_focus) # Привязка клика для снятия фокуса
self.notebook.add(self.training_tab, text="Training settings")
self.advanced_tab = ttk.Frame(self.notebook)
self.advanced_tab.bind("<Button-1>", self.remove_focus) # Привязка клика для снятия фокуса
self.notebook.add(self.advanced_tab, text="Advanced settings")
self.conversion_tab = ttk.Frame(self.notebook)
self.conversion_tab.bind("<Button-1>", self.remove_focus) # Привязка клика для снятия фокуса
self.notebook.add(self.conversion_tab, text="LoRA Conversion")
# Initialize tab contents
self.create_training_settings()
self.create_advanced_settings()
self.create_conversion_settings()
# Create context menu for copying console text
self.context_menu = Menu(self.master, tearoff=0)
self.context_menu.add_command(label="Copy", command=self.copy_selected_text)
def remove_focus(self, event):
"""Снимает фокус с активного виджета при клике по фону"""
self.master.focus_set()
def setup_styles(self):
"""Set up styles for dark theme"""
style = ttk.Style()
style.theme_use("clam")
style.configure(".", background=BG_COLOR, foreground=FG_COLOR)
style.configure("TFrame", background=BG_COLOR)
style.configure("TLabel", background=BG_COLOR, foreground=FG_COLOR)
style.configure(
"TButton",
background=BG_COLOR,
foreground=FG_COLOR,
bordercolor=BORDER_COLOR,
borderwidth=1,
focusthickness=3,
focuscolor=BG_COLOR,
padding=[5, 1]
)
style.map(
"TButton",
background=[("active", BUTTON_ACTIVE), ("pressed", BUTTON_ACTIVE)],
foreground=[("active", FG_COLOR), ("pressed", FG_COLOR)]
)
style.configure("TCheckbutton", background=BG_COLOR, foreground=FG_COLOR)
style.map("TCheckbutton", background=[("active", BG_COLOR)], foreground=[("active", FG_COLOR)])
style.configure("TNotebook", background=BG_COLOR, borderwidth=0)
style.configure("TNotebook.Tab", background=BG_COLOR, foreground=FG_COLOR, padding=[5, 2])
style.map("TNotebook.Tab", background=[("selected", ACCENT_COLOR)], foreground=[("selected", FG_COLOR)])
style.configure(
"TEntry",
fieldbackground=ENTRY_BG,
foreground=FG_COLOR,
bordercolor=BORDER_COLOR
)
style.map("TEntry",
fieldbackground=[("focus", ACTIVE_ENTRY_BG)],
foreground=[("focus", ACTIVE_ENTRY_FG)]
)
style.configure(
"TCombobox",
fieldbackground=ENTRY_BG,
background=BG_COLOR,
foreground=FG_COLOR,
bordercolor=BORDER_COLOR
)
style.map("TCombobox",
fieldbackground=[("focus", ACTIVE_ENTRY_BG), ("readonly", ENTRY_BG), ("!disabled", ENTRY_BG)],
foreground=[("focus", ACTIVE_ENTRY_FG), ("readonly", FG_COLOR), ("!disabled", FG_COLOR)],
selectbackground=[("readonly", ENTRY_BG), ("!disabled", ENTRY_BG)],
selectforeground=[("readonly", FG_COLOR), ("!disabled", FG_COLOR)]
)
style.configure(
"Vertical.TScrollbar",
background=ENTRY_BG,
troughcolor=BG_COLOR,
bordercolor=BORDER_COLOR,
arrowcolor=FG_COLOR,
darkcolor=BG_COLOR,
lightcolor=BG_COLOR
)
style.map(
"Vertical.TScrollbar",
background=[("active", BUTTON_ACTIVE), ("pressed", BUTTON_ACTIVE)]
)
def create_training_settings(self):
row = 0
ttk.Label(self.training_tab, text="Training Settings", font=("Arial", 12, "bold")).grid(
row=row, column=0, columnspan=3, pady=(10, 10)
)
row += 1
button_frame_top = ttk.Frame(self.training_tab)
button_frame_top.grid(row=row, column=0, columnspan=3, pady=5)
ttk.Button(button_frame_top, text="Load Settings", command=self.load_settings).pack(side=tk.LEFT, padx=10)
ttk.Button(button_frame_top, text="Save Settings", command=self.save_settings).pack(side=tk.LEFT, padx=10)
row += 1
settings_config = [
("Dataset Config", "DATASET_CONFIG", "file"),
("VAE Model", "VAE_MODEL", "file"),
("Clip Model", "CLIP_MODEL", "file"),
("T5 Model", "T5_MODEL", "file"),
("Dit Model", "DIT_MODEL", "file"),
("LoRA Output Dir", "LORA_OUTPUT_DIR", "directory"),
("LoRA Name", "LORA_NAME", "text"),
("Model Type", "MODEL_TYPE", "dropdown"),
("Flow Shift", "FLOW_SHIFT", "float"),
("Learning Rate", "LEARNING_RATE", "float"),
("LoRA LR Ratio", "LORA_LR_RATIO", "int"),
("Network Dim", "NETWORK_DIM", "int"),
("Network Alpha", "NETWORK_ALPHA", "float"),
("Max Train Epochs", "MAX_TRAIN_EPOCHS", "int"),
("Save Every N Epochs", "SAVE_EVERY_N_EPOCHS", "int"),
("Seed", "SEED", "int"),
("Blocks Swap", "BLOCKS_SWAP", "int"),
("Resume Training", "RESUME_TRAINING", "directory"),
("Optimizer Type", "OPTIMIZER_TYPE", "dropdown"),
("Optimizer Args", "OPTIMIZER_ARGS", "text"),
]
self.entries = {}
for label_text, key, input_type in settings_config:
ttk.Label(self.training_tab, text=f"{label_text}:").grid(
row=row, column=0, sticky=tk.W, padx=5, pady=2
)
if input_type == "dropdown":
if key == "MODEL_TYPE":
var = tk.StringVar(value=self.settings[key])
self.entries[key] = ttk.Combobox(
self.training_tab, textvariable=var, values=self.model_types, state="readonly"
)
self.entries[key].current(self.model_types.index(self.settings[key]))
elif key == "OPTIMIZER_TYPE":
var = tk.StringVar(value=self.settings[key])
self.entries[key] = ttk.Combobox(
self.training_tab, textvariable=var, values=self.optimizer_types, state="readonly"
)
self.entries[key].current(self.optimizer_types.index(self.settings[key]))
else:
self.entries[key] = ttk.Entry(self.training_tab, width=40)
self.entries[key].insert(0, self.settings[key])
self.entries[key].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
if input_type in ["file", "directory"]:
ttk.Button(
self.training_tab,
text="Browse",
command=lambda k=key, t=input_type: self.browse_file(k, t)
).grid(row=row, column=2, sticky=tk.W, padx=5)
row += 1
# Weight Optimization Checkboxes
ttk.Label(self.training_tab, text="Weight Optimization:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.fp8_var = tk.BooleanVar(value=self.settings["FP8"])
self.scaled_var = tk.BooleanVar(value=self.settings["SCALED"])
self.fp8_check = ttk.Checkbutton(self.training_tab, text="FP8 Base", variable=self.fp8_var, command=self.toggle_scaled)
self.fp8_check.grid(row=row, column=1, sticky=tk.W, padx=5, pady=2)
self.scaled_check = ttk.Checkbutton(self.training_tab, text="FP8 Scaled", variable=self.scaled_var, state=tk.DISABLED if not self.fp8_var.get() else tk.NORMAL)
self.scaled_check.grid(row=row, column=1, sticky=tk.W, padx=100, pady=2)
row += 1
self.enable_cache_var = tk.BooleanVar(value=True)
ttk.Checkbutton(
self.training_tab, text="Enable Cache Preparation", variable=self.enable_cache_var
).grid(row=row, column=0, columnspan=3, pady=5)
row += 1
button_frame = ttk.Frame(self.training_tab)
button_frame.grid(row=row, column=0, columnspan=3, pady=10)
ttk.Button(button_frame, text="Start Training", command=self.start_training).pack(side=tk.LEFT, padx=10)
ttk.Button(button_frame, text="Stop Training", command=self.stop_training).pack(side=tk.LEFT, padx=10)
row += 1
self.console_frame = ttk.Frame(self.training_tab)
self.console_frame.grid(row=row, column=0, columnspan=3, padx=5, pady=5, sticky="nsew")
self.console_output = tk.Text(
self.console_frame,
height=10,
width=80,
bg=ENTRY_BG,
fg=FG_COLOR,
wrap="word",
state="disabled",
selectbackground="white",
selectforeground="black"
)
self.console_output.grid(row=0, column=0, sticky="nsew")
self.console_scrollbar = ttk.Scrollbar(
self.console_frame,
orient="vertical",
command=self.console_output.yview,
style="Vertical.TScrollbar"
)
self.console_scrollbar.grid(row=0, column=1, sticky="ns")
self.console_output.configure(yscrollcommand=self.console_scrollbar.set)
self.console_output.bind("<MouseWheel>", self.on_mousewheel)
self.console_output.bind("<Button-4>", self.on_mousewheel) # For Linux
self.console_output.bind("<Button-5>", self.on_mousewheel) # For Linux
self.console_output.bind("<Button-3>", self.show_context_menu)
self.training_tab.grid_rowconfigure(row, weight=1)
self.training_tab.grid_columnconfigure(1, weight=1)
self.console_frame.grid_rowconfigure(0, weight=1)
self.console_frame.grid_columnconfigure(0, weight=1)
def toggle_scaled(self):
"""Enable or disable the Scaled checkbox based on FP8 checkbox state"""
if self.fp8_var.get():
self.scaled_check.config(state=tk.NORMAL)
else:
self.scaled_check.config(state=tk.DISABLED)
self.scaled_var.set(False)
def create_advanced_settings(self):
row = 0
ttk.Label(self.advanced_tab, text="Advanced Settings", font=("Arial", 12, "bold")).grid(
row=row, column=0, columnspan=3, pady=(10, 10)
)
row += 1
# Attention Mechanism
ttk.Label(self.advanced_tab, text="Attention Mechanism:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.attention_var = tk.StringVar(value=self.settings["ATTENTION_MECHANISM"])
attention_options = ["none", "sdpa", "flash_attn", "sage_attn", "xformers", "flash3", "split_attn"]
self.entries["ATTENTION_MECHANISM"] = ttk.Combobox(self.advanced_tab, textvariable=self.attention_var, values=attention_options, state="readonly")
self.entries["ATTENTION_MECHANISM"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
# Logging
ttk.Label(self.advanced_tab, text="Logging Directory:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["LOGGING_DIR"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["LOGGING_DIR"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
ttk.Button(self.advanced_tab, text="Browse", command=lambda: self.browse_directory("LOGGING_DIR")).grid(row=row, column=2, sticky=tk.W, padx=5)
row += 1
ttk.Label(self.advanced_tab, text="Log With:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.log_with_var = tk.StringVar(value=self.settings["LOG_WITH"])
log_with_options = ["none", "tensorboard", "wandb", "all"]
self.entries["LOG_WITH"] = ttk.Combobox(self.advanced_tab, textvariable=self.log_with_var, values=log_with_options, state="readonly")
self.entries["LOG_WITH"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="Log Prefix:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["LOG_PREFIX"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["LOG_PREFIX"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
# Memory Management
self.img_in_txt_in_offloading_var = tk.BooleanVar(value=self.settings["IMG_IN_TXT_IN_OFFLOADING"])
ttk.Checkbutton(self.advanced_tab, text="Offload img_in and txt_in to CPU", variable=self.img_in_txt_in_offloading_var).grid(row=row, column=0, columnspan=3, pady=5)
self.entries["IMG_IN_TXT_IN_OFFLOADING"] = self.img_in_txt_in_offloading_var
row += 1
# Learning Rate Scheduler
ttk.Label(self.advanced_tab, text="LR Scheduler:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.lr_scheduler_var = tk.StringVar(value=self.settings["LR_SCHEDULER"])
lr_scheduler_options = ["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "adafactor"]
self.entries["LR_SCHEDULER"] = ttk.Combobox(self.advanced_tab, textvariable=self.lr_scheduler_var, values=lr_scheduler_options, state="readonly")
self.entries["LR_SCHEDULER"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="LR Warmup Steps:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["LR_WARMUP_STEPS"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["LR_WARMUP_STEPS"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="LR Decay Steps:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["LR_DECAY_STEPS"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["LR_DECAY_STEPS"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
# Timestep Sampling
ttk.Label(self.advanced_tab, text="Timestep Sampling:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.timestep_sampling_var = tk.StringVar(value=self.settings["TIMESTEP_SAMPLING"])
timestep_sampling_options = ["sigma", "uniform", "sigmoid", "shift"]
self.entries["TIMESTEP_SAMPLING"] = ttk.Combobox(self.advanced_tab, textvariable=self.timestep_sampling_var, values=timestep_sampling_options, state="readonly")
self.entries["TIMESTEP_SAMPLING"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="Discrete Flow Shift:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["DISCRETE_FLOW_SHIFT"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["DISCRETE_FLOW_SHIFT"].insert(0, self.settings["DISCRETE_FLOW_SHIFT"])
self.entries["DISCRETE_FLOW_SHIFT"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
# Weighting Scheme
ttk.Label(self.advanced_tab, text="Weighting Scheme:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.weighting_scheme_var = tk.StringVar(value=self.settings["WEIGHTING_SCHEME"])
weighting_scheme_options = ["logit_normal", "mode", "cosmap", "sigma_sqrt", "none"]
self.entries["WEIGHTING_SCHEME"] = ttk.Combobox(self.advanced_tab, textvariable=self.weighting_scheme_var, values=weighting_scheme_options, state="readonly")
self.entries["WEIGHTING_SCHEME"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
# Metadata
ttk.Label(self.advanced_tab, text="Metadata Title:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["METADATA_TITLE"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["METADATA_TITLE"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="Metadata Author:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["METADATA_AUTHOR"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["METADATA_AUTHOR"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="Metadata Description:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["METADATA_DESCRIPTION"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["METADATA_DESCRIPTION"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="Metadata License:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["METADATA_LICENSE"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["METADATA_LICENSE"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="Metadata Tags:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["METADATA_TAGS"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["METADATA_TAGS"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
# Настройка столбца для автоматического расширения
self.advanced_tab.grid_columnconfigure(1, weight=1)
def create_conversion_settings(self):
"""Create the LoRA Conversion tab with input fields and buttons"""
row = 0
ttk.Label(self.conversion_tab, text="LoRA Conversion Settings", font=("Arial", 12, "bold")).grid(
row=row, column=0, columnspan=3, pady=(10, 10)
)
row += 1
# Input LoRA File
ttk.Label(self.conversion_tab, text="Input LoRA File:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.input_lora_entry = ttk.Entry(self.conversion_tab, width=40)
self.input_lora_entry.grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
self.input_lora_entry.insert(0, self.settings["INPUT_LORA"])
ttk.Button(self.conversion_tab, text="Browse", command=self.browse_input_lora).grid(row=row, column=2, sticky=tk.W, padx=5)
row += 1
# Output Directory
ttk.Label(self.conversion_tab, text="Output Directory:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.output_dir_entry = ttk.Entry(self.conversion_tab, width=40)
self.output_dir_entry.grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
self.output_dir_entry.insert(0, self.settings["OUTPUT_DIR"])
ttk.Button(self.conversion_tab, text="Browse", command=self.browse_output_dir).grid(row=row, column=2, sticky=tk.W, padx=5)
row += 1
# Converted LoRA Name
ttk.Label(self.conversion_tab, text="Converted LoRA Name:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.converted_lora_name_entry = ttk.Entry(self.conversion_tab, width=40)
self.converted_lora_name_entry.grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
self.converted_lora_name_entry.insert(0, self.settings["CONVERTED_LORA_NAME"])
row += 1
# Convert Button
ttk.Button(self.conversion_tab, text="Convert", command=self.convert_lora).grid(row=row, column=0, columnspan=3, pady=10)
# Configure grid to expand horizontally
self.conversion_tab.grid_columnconfigure(1, weight=1)
# Add entries to self.entries for saving/loading
self.entries["INPUT_LORA"] = self.input_lora_entry
self.entries["OUTPUT_DIR"] = self.output_dir_entry
self.entries["CONVERTED_LORA_NAME"] = self.converted_lora_name_entry
def show_context_menu(self, event):
"""Show context menu on right-click"""
try:
self.context_menu.tk_popup(event.x_root, event.y_root)
finally:
self.context_menu.grab_release()
def copy_selected_text(self):
"""Copy selected text to clipboard"""
if self.console_output.selection_get():
self.master.clipboard_clear()
self.master.clipboard_append(self.console_output.selection_get())
def browse_directory(self, setting_name):
path = filedialog.askdirectory()
if path:
self.entries[setting_name].delete(0, tk.END)
self.entries[setting_name].insert(0, path)
def on_mousewheel(self, event):
"""Handle scroll event"""
if self.console_output.yview()[1] < 1.0:
self.user_scrolled = True
else:
self.user_scrolled = False
def update_console(self, line):
"""Update console with scroll handling"""
self.console_output.configure(state="normal")
self.console_output.insert(tk.END, line)
if not self.user_scrolled:
self.console_output.yview(tk.END)
self.console_output.configure(state="disabled")
def browse_file(self, setting_name, input_type):
if input_type == "directory":
path = filedialog.askdirectory()
else:
path = filedialog.askopenfilename()
if path:
self.settings[setting_name] = path
self.entries[setting_name].delete(0, tk.END)
self.entries[setting_name].insert(0, self.settings[setting_name])
def browse_input_lora(self):
"""Browse for input LoRA file"""
file_path = filedialog.askopenfilename(filetypes=[("LoRA files", "*.safetensors")])
if file_path:
self.input_lora_entry.delete(0, tk.END)
self.input_lora_entry.insert(0, file_path)
def browse_output_dir(self):
"""Browse for output directory"""
dir_path = filedialog.askdirectory()
if dir_path:
self.output_dir_entry.delete(0, tk.END)
self.output_dir_entry.insert(0, dir_path)
def convert_lora(self):
"""Convert the LoRA model using specified settings"""
input_path = self.input_lora_entry.get()
output_dir = self.output_dir_entry.get()
converted_name = self.converted_lora_name_entry.get()
if not input_path or not output_dir or not converted_name:
messagebox.showerror("Error", "Please fill in all fields.")
return
output_path = os.path.join(output_dir, converted_name + ".safetensors")
command = [
sys.executable, "convert_lora.py",
"--input", input_path,
"--output", output_path,
"--target", "other"
]
self.run_subprocess(command, "Conversion")
def run_subprocess(self, cmd, name, callback=None):
"""Run a subprocess and handle its output with UTF-8 encoding"""
env = os.environ.copy()
env["PYTHONIOENCODING"] = "utf-8" # Устанавливаем UTF-8 для среды выполнения
if os.name == 'nt':
creationflags = subprocess.CREATE_NEW_PROCESS_GROUP
preexec_fn = None
else:
creationflags = 0
preexec_fn = os.setsid
# Запускаем подпроцесс с явным указанием кодировки UTF-8
process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True, # Включаем текстовый режим для автоматической декодировки
bufsize=1, # Построчная буферизация
universal_newlines=True, # Поддержка универсальных переносов строк
encoding='utf-8', # Явно указываем кодировку UTF-8 для вывода
env=env,
creationflags=creationflags,
preexec_fn=preexec_fn
)
self.current_process = process
if os.name == 'nt':
self.process_group_id = process.pid
def read_output(pipe, output_type):
"""Читает вывод подпроцесса построчно"""
while True:
line = pipe.readline()
if not line:
break
self.master.after(0, self.update_console, f"{name} {output_type}: {line}")
pipe.close()
# Запускаем потоки для чтения stdout и stderr
threading.Thread(target=read_output, args=(process.stdout, "STDOUT"), daemon=True).start()
threading.Thread(target=read_output, args=(process.stderr, "STDERR"), daemon=True).start()
def check_process():
"""Проверяет завершение подпроцесса"""
process.wait()
self.master.after(0, self.update_console, f"{name} process completed.\n")
self.current_process = None
if callback:
callback()
threading.Thread(target=check_process, daemon=True).start()
def start_training(self):
"""Запускает обучение с последовательным выполнением процессов кэширования"""
# Check for unsupported optimizer
optimizer_type = self.entries["OPTIMIZER_TYPE"].get()
if optimizer_type == "came":
messagebox.showwarning(
"Предупреждение",
"Оптимизатор 'came' не поддерживается в текущей версии. Пожалуйста, выберите другой оптимизатор, например 'adamw' или 'adamw8bit'."
)
return
# Update settings from entries
self.settings.update({
"MODEL_TYPE": self.entries["MODEL_TYPE"].get(),
"FLOW_SHIFT": float(self.entries["FLOW_SHIFT"].get()),
"LEARNING_RATE": float(self.entries["LEARNING_RATE"].get()),
"LORA_LR_RATIO": int(self.entries["LORA_LR_RATIO"].get()),
"NETWORK_DIM": int(self.entries["NETWORK_DIM"].get()),
"NETWORK_ALPHA": float(self.entries["NETWORK_ALPHA"].get()),
"MAX_TRAIN_EPOCHS": int(self.entries["MAX_TRAIN_EPOCHS"].get()),
"SAVE_EVERY_N_EPOCHS": int(self.entries["SAVE_EVERY_N_EPOCHS"].get()),
"SEED": int(self.entries["SEED"].get()),
"BLOCKS_SWAP": int(self.entries["BLOCKS_SWAP"].get()),
"DATASET_CONFIG": self.entries["DATASET_CONFIG"].get(),
"VAE_MODEL": self.entries["VAE_MODEL"].get(),
"CLIP_MODEL": self.entries["CLIP_MODEL"].get(),
"T5_MODEL": self.entries["T5_MODEL"].get(),
"DIT_MODEL": self.entries["DIT_MODEL"].get(),
"LORA_OUTPUT_DIR": self.entries["LORA_OUTPUT_DIR"].get(),
"LORA_NAME": self.entries["LORA_NAME"].get(),
"RESUME_TRAINING": self.entries["RESUME_TRAINING"].get(),
"OPTIMIZER_TYPE": optimizer_type,
"OPTIMIZER_ARGS": self.entries["OPTIMIZER_ARGS"].get(),
"ATTENTION_MECHANISM": self.entries["ATTENTION_MECHANISM"].get(),
"LOGGING_DIR": self.entries["LOGGING_DIR"].get(),
"LOG_WITH": self.entries["LOG_WITH"].get(),
"LOG_PREFIX": self.entries["LOG_PREFIX"].get(),
"IMG_IN_TXT_IN_OFFLOADING": self.entries["IMG_IN_TXT_IN_OFFLOADING"].get(),
"LR_SCHEDULER": self.entries["LR_SCHEDULER"].get(),
"LR_WARMUP_STEPS": self.entries["LR_WARMUP_STEPS"].get(),
"LR_DECAY_STEPS": self.entries["LR_DECAY_STEPS"].get(),
"TIMESTEP_SAMPLING": self.entries["TIMESTEP_SAMPLING"].get(),
"DISCRETE_FLOW_SHIFT": self.entries["DISCRETE_FLOW_SHIFT"].get(),
"WEIGHTING_SCHEME": self.entries["WEIGHTING_SCHEME"].get(),
"METADATA_TITLE": self.entries["METADATA_TITLE"].get(),
"METADATA_AUTHOR": self.entries["METADATA_AUTHOR"].get(),
"METADATA_DESCRIPTION": self.entries["METADATA_DESCRIPTION"].get(),
"METADATA_LICENSE": self.entries["METADATA_LICENSE"].get(),
"METADATA_TAGS": self.entries["METADATA_TAGS"].get(),
"FP8": self.fp8_var.get(),
"SCALED": self.scaled_var.get()
})
# Build training command
command = [
"accelerate", "launch",
"--num_cpu_threads_per_process", "2",
"--mixed_precision", "bf16",
"wan_train_network.py",
"--task", self.settings["MODEL_TYPE"],
"--dit", self.settings["DIT_MODEL"],
"--dataset_config", self.settings["DATASET_CONFIG"],
"--sdpa",
"--mixed_precision", "bf16",
]
# Добавляем параметры для Weight Optimization
if self.settings["FP8"]:
command.append("--fp8_base")
if self.settings["SCALED"]:
command.append("--fp8_scaled")
command.extend([
"--blocks_to_swap", str(self.settings["BLOCKS_SWAP"]),
"--optimizer_type", self.settings["OPTIMIZER_TYPE"],
"--learning_rate", str(self.settings["LEARNING_RATE"]),
"--gradient_checkpointing",
"--max_data_loader_n_workers", "2",
"--persistent_data_loader_workers",
"--network_module", "networks.lora_wan",
"--network_dim", str(self.settings["NETWORK_DIM"]),
"--network_alpha", str(self.settings["NETWORK_ALPHA"]),
"--network_args", f"loraplus_lr_ratio={self.settings['LORA_LR_RATIO']}",
"--timestep_sampling", self.settings["TIMESTEP_SAMPLING"],
"--discrete_flow_shift", str(self.settings["DISCRETE_FLOW_SHIFT"]),
"--max_train_epochs", str(self.settings["MAX_TRAIN_EPOCHS"]),
"--save_every_n_epochs", str(self.settings["SAVE_EVERY_N_EPOCHS"]),
"--save_state",
"--seed", str(self.settings["SEED"]),
"--output_dir", self.settings["LORA_OUTPUT_DIR"],
"--output_name", self.settings["LORA_NAME"],
])
if self.settings["OPTIMIZER_ARGS"]:
command.extend(["--optimizer_args", self.settings["OPTIMIZER_ARGS"]])
attention = self.settings["ATTENTION_MECHANISM"]
if attention != "none":
command.append(f"--{attention}")
logging_dir = self.settings["LOGGING_DIR"]
if logging_dir:
command.extend(["--logging_dir", logging_dir])
log_with = self.settings["LOG_WITH"]
if log_with != "none":
command.extend(["--log_with", log_with])
log_prefix = self.settings["LOG_PREFIX"]
if log_prefix:
command.extend(["--log_prefix", log_prefix])
if self.settings["IMG_IN_TXT_IN_OFFLOADING"]:
command.append("--img_in_txt_in_offloading")
lr_scheduler = self.settings["LR_SCHEDULER"]
if lr_scheduler:
command.extend(["--lr_scheduler", lr_scheduler])
lr_warmup_steps = self.settings["LR_WARMUP_STEPS"]
if lr_warmup_steps:
command.extend(["--lr_warmup_steps", lr_warmup_steps])
lr_decay_steps = self.settings["LR_DECAY_STEPS"]
if lr_decay_steps:
command.extend(["--lr_decay_steps", lr_decay_steps])
weighting_scheme = self.settings["WEIGHTING_SCHEME"]
if weighting_scheme != "none":
command.extend(["--weighting_scheme", weighting_scheme])
metadata_title = self.settings["METADATA_TITLE"]
if metadata_title:
command.extend(["--metadata_title", metadata_title])
metadata_author = self.settings["METADATA_AUTHOR"]
if metadata_author:
command.extend(["--metadata_author", metadata_author])
metadata_description = self.settings["METADATA_DESCRIPTION"]
if metadata_description:
command.extend(["--metadata_description", metadata_description])
metadata_license = self.settings["METADATA_LICENSE"]
if metadata_license:
command.extend(["--metadata_license", metadata_license])
metadata_tags = self.settings["METADATA_TAGS"]
if metadata_tags:
command.extend(["--metadata_tags", metadata_tags])
if self.settings["RESUME_TRAINING"].strip():
command.append(f"--resume={self.settings['RESUME_TRAINING']}")
cache_preparation_command = [
sys.executable, "wan_cache_latents.py",
"--dataset_config", self.settings["DATASET_CONFIG"],
"--vae", self.settings["VAE_MODEL"],
"--clip", self.settings["CLIP_MODEL"]
]
text_encoder_caching_command = [
sys.executable, "wan_cache_text_encoder_outputs.py",
"--dataset_config", self.settings["DATASET_CONFIG"],
"--t5", self.settings["T5_MODEL"],
"--batch_size", "16",
"--fp8_t5"
]
self.console_output.configure(state="normal")
self.console_output.delete(1.0, tk.END)
self.console_output.configure(state="disabled")
if self.enable_cache_var.get():
self.update_console("Starting cache preparation...\n")
def on_text_encoder_caching_complete():
self.update_console("Text encoder caching completed.\nStarting training...\n")
self.run_subprocess(command, "Training")
def on_cache_preparation_complete():
self.update_console("Cache preparation completed.\nStarting text encoder caching...\n")
self.run_subprocess(text_encoder_caching_command, "Text Encoder Caching", on_text_encoder_caching_complete)
self.run_subprocess(cache_preparation_command, "Cache Preparation", on_cache_preparation_complete)
else:
self.update_console("Starting training without caching...\n")
self.run_subprocess(command, "Training")
def stop_training(self):
"""Stop the current running process"""
if self.current_process and self.current_process.poll() is None:
try:
if os.name == 'nt':
self.current_process.send_signal(signal.CTRL_BREAK_EVENT)
else:
os.killpg(os.getpgid(self.current_process.pid), signal.SIGTERM)
except Exception as e:
self.update_console("Error stopping process: " + str(e) + "\n")
try:
self.current_process.wait(timeout=5)
except subprocess.TimeoutExpired:
try:
self.current_process.kill()
self.current_process.wait()
except Exception as e:
self.update_console("Error killing process: " + str(e) + "\n")
self.current_process = None
if self.training_thread:
self.training_thread.join(timeout=1)
self.training_thread = None
self.update_console("Training stopped\n")
else:
self.update_console("No active process to stop\n")
def save_settings(self):
"""Save all settings, including conversion settings, to a JSON file"""
current_settings = {}
for key, entry in self.entries.items():
if isinstance(entry, ttk.Combobox):
current_settings[key] = entry.get()
elif isinstance(entry, tk.BooleanVar):
current_settings[key] = entry.get()
else:
current_settings[key] = entry.get()
current_settings["FP8"] = self.fp8_var.get()
current_settings["SCALED"] = self.scaled_var.get()
current_settings["ENABLE_CACHE"] = self.enable_cache_var.get()
file_path = filedialog.asksaveasfilename(defaultextension=".json", filetypes=[("JSON files", "*.json")])
if file_path:
with open(file_path, "w") as f:
json.dump(current_settings, f, indent=4)
def load_settings(self):
"""Load settings from a JSON file, including conversion settings"""
file_path = filedialog.askopenfilename(filetypes=[("JSON files", "*.json")])
if file_path:
with open(file_path, "r") as f:
loaded_settings = json.load(f)
for key, value in loaded_settings.items():
if key in self.entries:
if isinstance(self.entries[key], ttk.Combobox):
self.entries[key].set(value)
elif isinstance(self.entries[key], tk.BooleanVar):
self.entries[key].set(value)
else:
self.entries[key].delete(0, tk.END)
self.entries[key].insert(0, value)
if "FP8" in loaded_settings:
self.fp8_var.set(loaded_settings["FP8"])
if "SCALED" in loaded_settings:
self.scaled_var.set(loaded_settings["SCALED"])
if "ENABLE_CACHE" in loaded_settings:
self.enable_cache_var.set(loaded_settings["ENABLE_CACHE"])
self.toggle_scaled() # Update Scaled checkbox state based on FP8
root = tk.Tk()
gui = LoRATrainerGUI(root)
root.mainloop()