import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch model = AutoModelForSequenceClassification.from_pretrained("knightscode139/bert-base-cased-imdb-sentiment") tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased") def predict(text): inputs = tokenizer(text, return_tensors="pt", padding="max_length", truncation=True) with torch.no_grad(): outputs = model(**inputs) probs = torch.nn.functional.softmax(outputs.logits[0], dim=0) return {"Negative": float(probs[0]), "Positive": float(probs[1])} interface = gr.Interface( fn=predict, inputs=gr.Textbox(lines=5, placeholder="Enter movie review..."), outputs=gr.Label(num_top_classes=2), title="IMDB Sentiment Classifier", description="Fine-tuned BERT on IMDB reviews - 92.8% test accuracy" ) interface.launch()