Spaces:
Runtime error
Runtime error
Commit
·
f21fcbc
1
Parent(s):
84ee359
Add demo on recording voice functionality to gradio
Browse files
app.py
CHANGED
|
@@ -22,6 +22,37 @@ interface_options = {
|
|
| 22 |
"theme": "default",
|
| 23 |
}
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
def predict(img):
|
| 27 |
img = PILImage.create(img)
|
|
@@ -30,8 +61,13 @@ def predict(img):
|
|
| 30 |
return labels_probs
|
| 31 |
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
demo = gradio.Interface(
|
| 34 |
-
fn=
|
| 35 |
inputs=gradio.inputs.Image(shape=(512, 512)),
|
| 36 |
outputs=gradio.outputs.Label(num_top_classes=5),
|
| 37 |
**interface_options,
|
|
|
|
| 22 |
"theme": "default",
|
| 23 |
}
|
| 24 |
|
| 25 |
+
N_FFT = 2048
|
| 26 |
+
HOP_LEN = 1024
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def create_spectrogram(filename):
|
| 30 |
+
audio, sr = torchaudio.load(filename)
|
| 31 |
+
specgram = torchaudio.transforms.MelSpectrogram(
|
| 32 |
+
sample_rate=sr,
|
| 33 |
+
n_fft=N_FFT,
|
| 34 |
+
win_length=N_FFT,
|
| 35 |
+
hop_length=HOP_LEN,
|
| 36 |
+
center=True,
|
| 37 |
+
pad_mode="reflect",
|
| 38 |
+
power=2.0,
|
| 39 |
+
norm="slaney",
|
| 40 |
+
onesided=True,
|
| 41 |
+
n_mels=224,
|
| 42 |
+
mel_scale="htk",
|
| 43 |
+
)(audio).mean(axis=0)
|
| 44 |
+
specgram = torchaudio.transforms.AmplitudeToDB()(specgram)
|
| 45 |
+
specgram = specgram - specgram.min()
|
| 46 |
+
specgram = specgram / specgram.max()
|
| 47 |
+
|
| 48 |
+
return specgram
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def create_image(filename):
|
| 52 |
+
specgram = create_spectrogram(filename)
|
| 53 |
+
dest = Path("temp.png")
|
| 54 |
+
save_image(specgram, "temp.png")
|
| 55 |
+
|
| 56 |
|
| 57 |
def predict(img):
|
| 58 |
img = PILImage.create(img)
|
|
|
|
| 61 |
return labels_probs
|
| 62 |
|
| 63 |
|
| 64 |
+
def end2endpipeline(filename):
|
| 65 |
+
create_image(filename)
|
| 66 |
+
return predict("temp.png")
|
| 67 |
+
|
| 68 |
+
|
| 69 |
demo = gradio.Interface(
|
| 70 |
+
fn=end2endpipeline,
|
| 71 |
inputs=gradio.inputs.Image(shape=(512, 512)),
|
| 72 |
outputs=gradio.outputs.Label(num_top_classes=5),
|
| 73 |
**interface_options,
|