Train / app.py
kvn420's picture
Update app.py
794b299 verified
raw
history blame
17.3 kB
import gradio as gr
import os
import subprocess
import sys
import requests
import json
import logging
from typing import Dict, List, Optional, Union
import time
import tempfile
import shutil
# Configuration du logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Fonction d'installation automatique
def install_package(package_name):
"""Installe un package Python"""
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", package_name])
return True
except subprocess.CalledProcessError as e:
logger.error(f"Erreur installation {package_name}: {e}")
return False
# Imports conditionnels avec tentative d'installation
def safe_import(module_name, package_name=None):
"""Import sécurisé avec possibilité d'installation"""
if package_name is None:
package_name = module_name
try:
return __import__(module_name), True
except ImportError:
logger.warning(f"{module_name} non trouvé")
return None, False
# Tentative d'imports
numpy, NUMPY_AVAILABLE = safe_import('numpy')
torch_module, TORCH_AVAILABLE = safe_import('torch')
if torch_module:
torch = torch_module
else:
torch = None
# Import transformers
try:
from transformers import (
AutoTokenizer, AutoModel, AutoProcessor,
AutoModelForCausalLM, TrainingArguments, Trainer,
DataCollatorForLanguageModeling
)
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
logger.warning("Transformers non disponible")
# Import datasets
try:
from datasets import Dataset, load_dataset, concatenate_datasets
DATASETS_AVAILABLE = True
except ImportError:
DATASETS_AVAILABLE = False
logger.warning("Datasets non disponible")
# Import HuggingFace Hub
try:
from huggingface_hub import HfApi
HF_HUB_AVAILABLE = True
except ImportError:
HF_HUB_AVAILABLE = False
logger.warning("HuggingFace Hub non disponible")
# Import PIL
try:
from PIL import Image
PIL_AVAILABLE = True
except ImportError:
PIL_AVAILABLE = False
# Import librosa
try:
import librosa
LIBROSA_AVAILABLE = True
except ImportError:
LIBROSA_AVAILABLE = False
# Import OpenCV
try:
import cv2
CV2_AVAILABLE = True
except ImportError:
CV2_AVAILABLE = False
class MultimodalTrainer:
def __init__(self):
self.current_model = None
self.current_tokenizer = None
self.current_processor = None
self.training_data = []
# Device selection
if TORCH_AVAILABLE and torch.cuda.is_available():
self.device = torch.device("cuda")
else:
self.device = "cpu"
# HF API
if HF_HUB_AVAILABLE:
self.hf_api = HfApi()
else:
self.hf_api = None
def install_dependencies(self, packages_to_install):
"""Installe les dépendances manquantes"""
installation_results = []
for package in packages_to_install:
installation_results.append(f"📦 Installation de {package}...")
success = install_package(package)
if success:
installation_results.append(f"✅ {package} installé avec succès!")
else:
installation_results.append(f"❌ Échec installation {package}")
installation_results.append("\n🔄 Redémarrage requis pour prendre effet")
return "\n".join(installation_results)
def check_dependencies(self):
"""Vérifie et affiche l'état des dépendances"""
deps = {
"NumPy": NUMPY_AVAILABLE,
"PyTorch": TORCH_AVAILABLE,
"Transformers": TRANSFORMERS_AVAILABLE,
"Datasets": DATASETS_AVAILABLE,
"HuggingFace Hub": HF_HUB_AVAILABLE,
"PIL (Images)": PIL_AVAILABLE,
"Librosa (Audio)": LIBROSA_AVAILABLE,
"OpenCV (Vidéo)": CV2_AVAILABLE
}
status = "📦 État des dépendances:\n\n"
# Dépendances critiques
critical_deps = ["PyTorch", "Transformers", "Datasets"]
status += "🔥 CRITIQUES:\n"
for dep in critical_deps:
icon = "✅" if deps.get(dep.replace(" ", "").replace("(", "").replace(")", "")) else "❌"
status += f"{icon} {dep}\n"
status += "\n🔧 OPTIONNELLES:\n"
optional_deps = ["NumPy", "HuggingFace Hub", "PIL (Images)", "Librosa (Audio)", "OpenCV (Vidéo)"]
for dep in optional_deps:
key = dep.replace(" ", "").replace("(", "").replace(")", "").replace("Images", "").replace("Audio", "").replace("Vidéo", "")
if key == "HuggingFaceHub":
key = "HuggingFace Hub"
icon = "✅" if deps.get(key) else "⚠️"
status += f"{icon} {dep}\n"
# Système info
status += f"\n💻 SYSTÈME:\n"
status += f"🐍 Python: {sys.version.split()[0]}\n"
status += f"💾 Device: {self.device}\n"
if TORCH_AVAILABLE and torch.cuda.is_available():
status += f"🚀 GPU: {torch.cuda.get_device_name()}\n"
status += f"🔋 VRAM: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB\n"
return status
def load_model(self, model_name: str, model_type: str = "causal"):
"""Charge un modèle depuis Hugging Face"""
if not TRANSFORMERS_AVAILABLE:
return "❌ Transformers non installé! Utilisez l'outil d'installation."
if not TORCH_AVAILABLE:
return "❌ PyTorch non installé! Utilisez l'outil d'installation."
if not model_name.strip():
return "❌ Veuillez entrer un nom de modèle"
try:
logger.info(f"Chargement du modèle: {model_name}")
if model_type == "causal":
self.current_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True
)
else:
self.current_model = AutoModel.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True
)
# Charge le tokenizer
try:
self.current_tokenizer = AutoTokenizer.from_pretrained(
model_name, trust_remote_code=True
)
if self.current_tokenizer.pad_token is None:
self.current_tokenizer.pad_token = self.current_tokenizer.eos_token
except Exception as e:
logger.warning(f"Tokenizer non trouvé: {e}")
# Charge le processor
try:
self.current_processor = AutoProcessor.from_pretrained(
model_name, trust_remote_code=True
)
except Exception as e:
logger.warning(f"Processor non trouvé: {e}")
return f"✅ Modèle {model_name} chargé avec succès!\nType: {type(self.current_model).__name__}"
except Exception as e:
error_msg = f"❌ Erreur lors du chargement: {str(e)}"
logger.error(error_msg)
return error_msg
def load_single_dataset(self, dataset_name: str, split: str = "train"):
"""Charge un dataset individuel"""
if not DATASETS_AVAILABLE:
return "❌ Datasets non installé! Utilisez l'outil d'installation."
if not dataset_name.strip():
return "❌ Veuillez entrer un nom de dataset"
try:
dataset = load_dataset(dataset_name, split=split)
if hasattr(self, 'training_data') and self.training_data:
self.training_data = concatenate_datasets([self.training_data, dataset])
else:
self.training_data = dataset
return f"✅ Dataset {dataset_name} ajouté!\n📊 Total: {len(self.training_data)} exemples\n🔍 Colonnes: {list(self.training_data.column_names)}"
except Exception as e:
error_msg = f"❌ Erreur dataset: {str(e)}"
logger.error(error_msg)
return error_msg
def simulate_training(self, output_dir: str, num_epochs: int, learning_rate: float, batch_size: int):
"""Simulation d'entraînement (mode démo)"""
if not self.current_model and not self.training_data:
return "❌ Aucun modèle ou donnée chargé!"
# Simulation
steps = ["🏗️ Préparation des données", "🔧 Configuration du modèle", "🚀 Début entraînement"]
result = "📋 SIMULATION D'ENTRAÎNEMENT:\n\n"
result += f"📂 Sortie: {output_dir}\n"
result += f"🔄 Époques: {num_epochs}\n"
result += f"📚 Learning rate: {learning_rate}\n"
result += f"📦 Batch size: {batch_size}\n\n"
for i, step in enumerate(steps):
result += f"Étape {i+1}: {step} ✅\n"
result += "\n⚠️ MODE DÉMO - Pour un vrai entraînement, installez PyTorch + Transformers"
return result
def get_model_info(self):
"""Retourne les informations du modèle actuel"""
if not self.current_model:
return "❌ Aucun modèle chargé"
info = f"📋 INFORMATIONS DU MODÈLE:\n\n"
info += f"🏷️ Type: {type(self.current_model).__name__}\n"
info += f"💾 Device: {next(self.current_model.parameters()).device}\n"
# Compte les paramètres
if TORCH_AVAILABLE:
total_params = sum(p.numel() for p in self.current_model.parameters())
trainable_params = sum(p.numel() for p in self.current_model.parameters() if p.requires_grad)
info += f"🔢 Paramètres totaux: {total_params:,}\n"
info += f"🎯 Paramètres entraînables: {trainable_params:,}\n"
if hasattr(self, 'training_data') and self.training_data:
info += f"\n📊 DONNÉES:\n"
info += f"📈 Exemples: {len(self.training_data):,}\n"
info += f"📝 Colonnes: {list(self.training_data.column_names)}\n"
return info
# Initialisation
trainer = MultimodalTrainer()
# Interface Gradio
def create_interface():
with gr.Blocks(title="🔥 Multimodal Training Hub", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# 🔥 Multimodal Training Hub
### Plateforme d'entraînement de modèles multimodaux
🤖 Modèles • 📊 Datasets • 🏋️ Training • 🛠️ Outils
""")
with gr.Tab("🔧 Diagnostic"):
gr.Markdown("### 🩺 Vérification du système")
with gr.Row():
check_deps_btn = gr.Button("🔍 Vérifier dépendances", variant="primary")
install_core_btn = gr.Button("📦 Installer packages critiques", variant="secondary")
deps_status = gr.Textbox(
label="État des dépendances",
lines=15,
interactive=False
)
with gr.Row():
install_transformers_btn = gr.Button("🤗 Installer Transformers")
install_torch_btn = gr.Button("🔥 Installer PyTorch")
install_datasets_btn = gr.Button("📊 Installer Datasets")
install_status = gr.Textbox(
label="Status d'installation",
lines=5,
interactive=False
)
# Events
check_deps_btn.click(trainer.check_dependencies, outputs=deps_status)
install_transformers_btn.click(
lambda: trainer.install_dependencies(["transformers"]),
outputs=install_status
)
install_torch_btn.click(
lambda: trainer.install_dependencies(["torch", "torchvision"]),
outputs=install_status
)
install_datasets_btn.click(
lambda: trainer.install_dependencies(["datasets"]),
outputs=install_status
)
install_core_btn.click(
lambda: trainer.install_dependencies(["torch", "transformers", "datasets", "accelerate"]),
outputs=install_status
)
with gr.Tab("🤖 Modèle"):
with gr.Row():
with gr.Column():
model_input = gr.Textbox(
label="Nom du modèle HuggingFace",
placeholder="kvn420/Tenro_V4.1",
value="kvn420/Tenro_V4.1"
)
model_type = gr.Dropdown(
label="Type de modèle",
choices=["causal", "base"],
value="causal"
)
load_model_btn = gr.Button("🔄 Charger le modèle", variant="primary")
with gr.Column():
model_status = gr.Textbox(
label="Status du modèle",
interactive=False,
lines=8
)
info_btn = gr.Button("ℹ️ Info modèle")
model_info = gr.Textbox(
label="Informations détaillées",
interactive=False,
lines=8
)
load_model_btn.click(
trainer.load_model,
inputs=[model_input, model_type],
outputs=model_status
)
info_btn.click(trainer.get_model_info, outputs=model_info)
with gr.Tab("📊 Données"):
with gr.Row():
with gr.Column():
gr.Markdown("### 📝 Dataset individuel")
dataset_input = gr.Textbox(
label="Nom du dataset",
placeholder="microsoft/coco"
)
dataset_split = gr.Textbox(
label="Split",
value="train"
)
load_dataset_btn = gr.Button("➕ Ajouter dataset", variant="primary")
with gr.Column():
data_status = gr.Textbox(
label="Status des données",
interactive=False,
lines=12
)
load_dataset_btn.click(
trainer.load_single_dataset,
inputs=[dataset_input, dataset_split],
outputs=data_status
)
with gr.Tab("🏋️ Entraînement"):
with gr.Row():
with gr.Column():
output_dir = gr.Textbox(
label="Dossier de sortie",
value="./trained_model"
)
with gr.Row():
num_epochs = gr.Number(
label="Époques",
value=3,
minimum=1
)
batch_size = gr.Number(
label="Batch size",
value=4,
minimum=1
)
learning_rate = gr.Number(
label="Learning rate",
value=5e-5,
step=1e-6
)
train_btn = gr.Button("🚀 Simuler entraînement", variant="primary", size="lg")
with gr.Column():
training_status = gr.Textbox(
label="Status de l'entraînement",
interactive=False,
lines=12
)
train_btn.click(
trainer.simulate_training,
inputs=[output_dir, num_epochs, learning_rate, batch_size],
outputs=training_status
)
# Auto-check au démarrage
app.load(trainer.check_dependencies, outputs=deps_status)
return app
# Lancement
if __name__ == "__main__":
app = create_interface()
app.launch(share=True, server_name="0.0.0.0", server_port=7860)