Update app.py
Browse files
app.py
CHANGED
|
@@ -9,6 +9,7 @@ from typing import Dict, List, Optional, Union
|
|
| 9 |
import time
|
| 10 |
import tempfile
|
| 11 |
import shutil
|
|
|
|
| 12 |
|
| 13 |
# Configuration du logging
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -18,80 +19,107 @@ logger = logging.getLogger(__name__)
|
|
| 18 |
def install_package(package_name):
|
| 19 |
"""Installe un package Python"""
|
| 20 |
try:
|
| 21 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", package_name])
|
|
|
|
| 22 |
return True
|
| 23 |
except subprocess.CalledProcessError as e:
|
| 24 |
-
logger.error(f"Erreur installation {package_name}: {e}")
|
| 25 |
return False
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
def
|
| 29 |
-
"""
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
|
|
|
| 33 |
try:
|
| 34 |
-
|
|
|
|
| 35 |
except ImportError:
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
#
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
#
|
| 48 |
-
try:
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
except ImportError:
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
|
| 91 |
-
import cv2
|
| 92 |
-
CV2_AVAILABLE = True
|
| 93 |
-
except ImportError:
|
| 94 |
-
CV2_AVAILABLE = False
|
| 95 |
|
| 96 |
class MultimodalTrainer:
|
| 97 |
def __init__(self):
|
|
@@ -101,43 +129,81 @@ class MultimodalTrainer:
|
|
| 101 |
self.training_data = []
|
| 102 |
|
| 103 |
# Device selection
|
| 104 |
-
if TORCH_AVAILABLE and torch.cuda.is_available():
|
| 105 |
self.device = torch.device("cuda")
|
| 106 |
else:
|
| 107 |
self.device = "cpu"
|
| 108 |
|
| 109 |
# HF API
|
| 110 |
-
if HF_HUB_AVAILABLE:
|
| 111 |
self.hf_api = HfApi()
|
| 112 |
else:
|
| 113 |
self.hf_api = None
|
| 114 |
-
|
| 115 |
def install_dependencies(self, packages_to_install):
|
| 116 |
"""Installe les dépendances manquantes"""
|
| 117 |
installation_results = []
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
for package in packages_to_install:
|
| 120 |
installation_results.append(f"📦 Installation de {package}...")
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
if success:
|
| 123 |
installation_results.append(f"✅ {package} installé avec succès!")
|
| 124 |
else:
|
| 125 |
installation_results.append(f"❌ Échec installation {package}")
|
| 126 |
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
return "\n".join(installation_results)
|
| 129 |
|
| 130 |
def check_dependencies(self):
|
| 131 |
"""Vérifie et affiche l'état des dépendances"""
|
|
|
|
|
|
|
|
|
|
| 132 |
deps = {
|
| 133 |
-
"NumPy": NUMPY_AVAILABLE,
|
| 134 |
"PyTorch": TORCH_AVAILABLE,
|
| 135 |
"Transformers": TRANSFORMERS_AVAILABLE,
|
| 136 |
"Datasets": DATASETS_AVAILABLE,
|
|
|
|
| 137 |
"HuggingFace Hub": HF_HUB_AVAILABLE,
|
| 138 |
-
"PIL
|
| 139 |
-
"Librosa
|
| 140 |
-
"OpenCV
|
| 141 |
}
|
| 142 |
|
| 143 |
status = "📦 État des dépendances:\n\n"
|
|
@@ -146,16 +212,13 @@ class MultimodalTrainer:
|
|
| 146 |
critical_deps = ["PyTorch", "Transformers", "Datasets"]
|
| 147 |
status += "🔥 CRITIQUES:\n"
|
| 148 |
for dep in critical_deps:
|
| 149 |
-
icon = "✅" if deps.get(dep
|
| 150 |
status += f"{icon} {dep}\n"
|
| 151 |
|
| 152 |
status += "\n🔧 OPTIONNELLES:\n"
|
| 153 |
-
optional_deps = ["NumPy", "HuggingFace Hub", "PIL
|
| 154 |
for dep in optional_deps:
|
| 155 |
-
|
| 156 |
-
if key == "HuggingFaceHub":
|
| 157 |
-
key = "HuggingFace Hub"
|
| 158 |
-
icon = "✅" if deps.get(key) else "⚠️"
|
| 159 |
status += f"{icon} {dep}\n"
|
| 160 |
|
| 161 |
# Système info
|
|
@@ -163,7 +226,7 @@ class MultimodalTrainer:
|
|
| 163 |
status += f"🐍 Python: {sys.version.split()[0]}\n"
|
| 164 |
status += f"💾 Device: {self.device}\n"
|
| 165 |
|
| 166 |
-
if TORCH_AVAILABLE and torch.cuda.is_available():
|
| 167 |
status += f"🚀 GPU: {torch.cuda.get_device_name()}\n"
|
| 168 |
status += f"🔋 VRAM: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB\n"
|
| 169 |
|
|
@@ -174,7 +237,7 @@ class MultimodalTrainer:
|
|
| 174 |
if not TRANSFORMERS_AVAILABLE:
|
| 175 |
return "❌ Transformers non installé! Utilisez l'outil d'installation."
|
| 176 |
|
| 177 |
-
if not TORCH_AVAILABLE:
|
| 178 |
return "❌ PyTorch non installé! Utilisez l'outil d'installation."
|
| 179 |
|
| 180 |
if not model_name.strip():
|
|
@@ -225,7 +288,7 @@ class MultimodalTrainer:
|
|
| 225 |
|
| 226 |
def load_single_dataset(self, dataset_name: str, split: str = "train"):
|
| 227 |
"""Charge un dataset individuel"""
|
| 228 |
-
if not DATASETS_AVAILABLE:
|
| 229 |
return "❌ Datasets non installé! Utilisez l'outil d'installation."
|
| 230 |
|
| 231 |
if not dataset_name.strip():
|
|
@@ -262,7 +325,10 @@ class MultimodalTrainer:
|
|
| 262 |
for i, step in enumerate(steps):
|
| 263 |
result += f"Étape {i+1}: {step} ✅\n"
|
| 264 |
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
| 266 |
return result
|
| 267 |
|
| 268 |
def get_model_info(self):
|
|
@@ -272,10 +338,11 @@ class MultimodalTrainer:
|
|
| 272 |
|
| 273 |
info = f"📋 INFORMATIONS DU MODÈLE:\n\n"
|
| 274 |
info += f"🏷️ Type: {type(self.current_model).__name__}\n"
|
| 275 |
-
info += f"💾 Device: {next(self.current_model.parameters()).device}\n"
|
| 276 |
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
| 279 |
total_params = sum(p.numel() for p in self.current_model.parameters())
|
| 280 |
trainable_params = sum(p.numel() for p in self.current_model.parameters() if p.requires_grad)
|
| 281 |
|
|
@@ -323,7 +390,7 @@ def create_interface():
|
|
| 323 |
|
| 324 |
install_status = gr.Textbox(
|
| 325 |
label="Status d'installation",
|
| 326 |
-
lines=
|
| 327 |
interactive=False
|
| 328 |
)
|
| 329 |
|
|
@@ -335,7 +402,7 @@ def create_interface():
|
|
| 335 |
outputs=install_status
|
| 336 |
)
|
| 337 |
install_torch_btn.click(
|
| 338 |
-
lambda: trainer.install_dependencies(["torch"
|
| 339 |
outputs=install_status
|
| 340 |
)
|
| 341 |
install_datasets_btn.click(
|
|
@@ -352,8 +419,8 @@ def create_interface():
|
|
| 352 |
with gr.Column():
|
| 353 |
model_input = gr.Textbox(
|
| 354 |
label="Nom du modèle HuggingFace",
|
| 355 |
-
placeholder="
|
| 356 |
-
value="
|
| 357 |
)
|
| 358 |
model_type = gr.Dropdown(
|
| 359 |
label="Type de modèle",
|
|
@@ -390,7 +457,12 @@ def create_interface():
|
|
| 390 |
gr.Markdown("### 📝 Dataset individuel")
|
| 391 |
dataset_input = gr.Textbox(
|
| 392 |
label="Nom du dataset",
|
| 393 |
-
placeholder="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
)
|
| 395 |
dataset_split = gr.Textbox(
|
| 396 |
label="Split",
|
|
@@ -405,9 +477,16 @@ def create_interface():
|
|
| 405 |
lines=12
|
| 406 |
)
|
| 407 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
load_dataset_btn.click(
|
| 409 |
-
|
| 410 |
-
inputs=[dataset_input, dataset_split],
|
| 411 |
outputs=data_status
|
| 412 |
)
|
| 413 |
|
|
|
|
| 9 |
import time
|
| 10 |
import tempfile
|
| 11 |
import shutil
|
| 12 |
+
import importlib
|
| 13 |
|
| 14 |
# Configuration du logging
|
| 15 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 19 |
def install_package(package_name):
|
| 20 |
"""Installe un package Python"""
|
| 21 |
try:
|
| 22 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package_name, "--quiet"])
|
| 23 |
+
logger.info(f"✅ {package_name} installé avec succès")
|
| 24 |
return True
|
| 25 |
except subprocess.CalledProcessError as e:
|
| 26 |
+
logger.error(f"❌ Erreur installation {package_name}: {e}")
|
| 27 |
return False
|
| 28 |
|
| 29 |
+
# Fonction pour recharger les modules après installation
|
| 30 |
+
def reload_module(module_name):
|
| 31 |
+
"""Recharge un module après installation"""
|
| 32 |
+
try:
|
| 33 |
+
if module_name in sys.modules:
|
| 34 |
+
importlib.reload(sys.modules[module_name])
|
| 35 |
+
else:
|
| 36 |
+
__import__(module_name)
|
| 37 |
+
return True
|
| 38 |
+
except Exception as e:
|
| 39 |
+
logger.error(f"Erreur rechargement {module_name}: {e}")
|
| 40 |
+
return False
|
| 41 |
+
|
| 42 |
+
# Imports conditionnels avec vérification
|
| 43 |
+
def check_and_import_dependencies():
|
| 44 |
+
"""Vérifie et importe toutes les dépendances"""
|
| 45 |
+
global numpy, torch, NUMPY_AVAILABLE, TORCH_AVAILABLE, TRANSFORMERS_AVAILABLE
|
| 46 |
+
global DATASETS_AVAILABLE, HF_HUB_AVAILABLE, PIL_AVAILABLE, LIBROSA_AVAILABLE, CV2_AVAILABLE
|
| 47 |
+
global AutoTokenizer, AutoModel, AutoProcessor, AutoModelForCausalLM
|
| 48 |
+
global TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
| 49 |
+
global Dataset, load_dataset, concatenate_datasets, HfApi, Image, librosa, cv2
|
| 50 |
|
| 51 |
+
# NumPy
|
| 52 |
try:
|
| 53 |
+
import numpy
|
| 54 |
+
NUMPY_AVAILABLE = True
|
| 55 |
except ImportError:
|
| 56 |
+
numpy = None
|
| 57 |
+
NUMPY_AVAILABLE = False
|
| 58 |
+
|
| 59 |
+
# PyTorch
|
| 60 |
+
try:
|
| 61 |
+
import torch
|
| 62 |
+
TORCH_AVAILABLE = True
|
| 63 |
+
except ImportError:
|
| 64 |
+
torch = None
|
| 65 |
+
TORCH_AVAILABLE = False
|
| 66 |
+
|
| 67 |
+
# Transformers
|
| 68 |
+
try:
|
| 69 |
+
from transformers import (
|
| 70 |
+
AutoTokenizer, AutoModel, AutoProcessor,
|
| 71 |
+
AutoModelForCausalLM, TrainingArguments, Trainer,
|
| 72 |
+
DataCollatorForLanguageModeling
|
| 73 |
+
)
|
| 74 |
+
TRANSFORMERS_AVAILABLE = True
|
| 75 |
+
except ImportError:
|
| 76 |
+
TRANSFORMERS_AVAILABLE = False
|
| 77 |
+
AutoTokenizer = AutoModel = AutoProcessor = None
|
| 78 |
+
AutoModelForCausalLM = TrainingArguments = Trainer = None
|
| 79 |
+
DataCollatorForLanguageModeling = None
|
| 80 |
+
|
| 81 |
+
# Datasets
|
| 82 |
+
try:
|
| 83 |
+
from datasets import Dataset, load_dataset, concatenate_datasets
|
| 84 |
+
DATASETS_AVAILABLE = True
|
| 85 |
+
except ImportError:
|
| 86 |
+
DATASETS_AVAILABLE = False
|
| 87 |
+
Dataset = load_dataset = concatenate_datasets = None
|
| 88 |
+
|
| 89 |
+
# HuggingFace Hub
|
| 90 |
+
try:
|
| 91 |
+
from huggingface_hub import HfApi
|
| 92 |
+
HF_HUB_AVAILABLE = True
|
| 93 |
+
except ImportError:
|
| 94 |
+
HF_HUB_AVAILABLE = False
|
| 95 |
+
HfApi = None
|
| 96 |
+
|
| 97 |
+
# PIL
|
| 98 |
+
try:
|
| 99 |
+
from PIL import Image
|
| 100 |
+
PIL_AVAILABLE = True
|
| 101 |
+
except ImportError:
|
| 102 |
+
PIL_AVAILABLE = False
|
| 103 |
+
Image = None
|
| 104 |
+
|
| 105 |
+
# Librosa
|
| 106 |
+
try:
|
| 107 |
+
import librosa
|
| 108 |
+
LIBROSA_AVAILABLE = True
|
| 109 |
+
except ImportError:
|
| 110 |
+
LIBROSA_AVAILABLE = False
|
| 111 |
+
librosa = None
|
| 112 |
+
|
| 113 |
+
# OpenCV
|
| 114 |
+
try:
|
| 115 |
+
import cv2
|
| 116 |
+
CV2_AVAILABLE = True
|
| 117 |
+
except ImportError:
|
| 118 |
+
CV2_AVAILABLE = False
|
| 119 |
+
cv2 = None
|
| 120 |
|
| 121 |
+
# Initialisation des imports
|
| 122 |
+
check_and_import_dependencies()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
class MultimodalTrainer:
|
| 125 |
def __init__(self):
|
|
|
|
| 129 |
self.training_data = []
|
| 130 |
|
| 131 |
# Device selection
|
| 132 |
+
if TORCH_AVAILABLE and torch and torch.cuda.is_available():
|
| 133 |
self.device = torch.device("cuda")
|
| 134 |
else:
|
| 135 |
self.device = "cpu"
|
| 136 |
|
| 137 |
# HF API
|
| 138 |
+
if HF_HUB_AVAILABLE and HfApi:
|
| 139 |
self.hf_api = HfApi()
|
| 140 |
else:
|
| 141 |
self.hf_api = None
|
| 142 |
+
|
| 143 |
def install_dependencies(self, packages_to_install):
|
| 144 |
"""Installe les dépendances manquantes"""
|
| 145 |
installation_results = []
|
| 146 |
|
| 147 |
+
# Mapping des packages
|
| 148 |
+
package_mapping = {
|
| 149 |
+
"torch": "torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu",
|
| 150 |
+
"transformers": "transformers",
|
| 151 |
+
"datasets": "datasets",
|
| 152 |
+
"accelerate": "accelerate",
|
| 153 |
+
"pillow": "pillow",
|
| 154 |
+
"librosa": "librosa",
|
| 155 |
+
"opencv": "opencv-python",
|
| 156 |
+
"huggingface_hub": "huggingface_hub"
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
for package in packages_to_install:
|
| 160 |
installation_results.append(f"📦 Installation de {package}...")
|
| 161 |
+
|
| 162 |
+
# Utilise le mapping si disponible
|
| 163 |
+
install_cmd = package_mapping.get(package.lower(), package)
|
| 164 |
+
|
| 165 |
+
if package.lower() == "torch":
|
| 166 |
+
# Installation spéciale pour PyTorch
|
| 167 |
+
try:
|
| 168 |
+
subprocess.check_call([
|
| 169 |
+
sys.executable, "-m", "pip", "install",
|
| 170 |
+
"torch", "torchvision", "torchaudio",
|
| 171 |
+
"--index-url", "https://download.pytorch.org/whl/cpu",
|
| 172 |
+
"--quiet"
|
| 173 |
+
])
|
| 174 |
+
success = True
|
| 175 |
+
except subprocess.CalledProcessError:
|
| 176 |
+
success = False
|
| 177 |
+
else:
|
| 178 |
+
success = install_package(install_cmd)
|
| 179 |
+
|
| 180 |
if success:
|
| 181 |
installation_results.append(f"✅ {package} installé avec succès!")
|
| 182 |
else:
|
| 183 |
installation_results.append(f"❌ Échec installation {package}")
|
| 184 |
|
| 185 |
+
# Recharge les dépendances après installation
|
| 186 |
+
installation_results.append("\n🔄 Rechargement des modules...")
|
| 187 |
+
check_and_import_dependencies()
|
| 188 |
+
self.__init__() # Réinitialise l'instance
|
| 189 |
+
|
| 190 |
+
installation_results.append("✅ Modules rechargés!")
|
| 191 |
return "\n".join(installation_results)
|
| 192 |
|
| 193 |
def check_dependencies(self):
|
| 194 |
"""Vérifie et affiche l'état des dépendances"""
|
| 195 |
+
# Force la vérification
|
| 196 |
+
check_and_import_dependencies()
|
| 197 |
+
|
| 198 |
deps = {
|
|
|
|
| 199 |
"PyTorch": TORCH_AVAILABLE,
|
| 200 |
"Transformers": TRANSFORMERS_AVAILABLE,
|
| 201 |
"Datasets": DATASETS_AVAILABLE,
|
| 202 |
+
"NumPy": NUMPY_AVAILABLE,
|
| 203 |
"HuggingFace Hub": HF_HUB_AVAILABLE,
|
| 204 |
+
"PIL": PIL_AVAILABLE,
|
| 205 |
+
"Librosa": LIBROSA_AVAILABLE,
|
| 206 |
+
"OpenCV": CV2_AVAILABLE
|
| 207 |
}
|
| 208 |
|
| 209 |
status = "📦 État des dépendances:\n\n"
|
|
|
|
| 212 |
critical_deps = ["PyTorch", "Transformers", "Datasets"]
|
| 213 |
status += "🔥 CRITIQUES:\n"
|
| 214 |
for dep in critical_deps:
|
| 215 |
+
icon = "✅" if deps.get(dep) else "❌"
|
| 216 |
status += f"{icon} {dep}\n"
|
| 217 |
|
| 218 |
status += "\n🔧 OPTIONNELLES:\n"
|
| 219 |
+
optional_deps = ["NumPy", "HuggingFace Hub", "PIL", "Librosa", "OpenCV"]
|
| 220 |
for dep in optional_deps:
|
| 221 |
+
icon = "✅" if deps.get(dep) else "⚠️"
|
|
|
|
|
|
|
|
|
|
| 222 |
status += f"{icon} {dep}\n"
|
| 223 |
|
| 224 |
# Système info
|
|
|
|
| 226 |
status += f"🐍 Python: {sys.version.split()[0]}\n"
|
| 227 |
status += f"💾 Device: {self.device}\n"
|
| 228 |
|
| 229 |
+
if TORCH_AVAILABLE and torch and torch.cuda.is_available():
|
| 230 |
status += f"🚀 GPU: {torch.cuda.get_device_name()}\n"
|
| 231 |
status += f"🔋 VRAM: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB\n"
|
| 232 |
|
|
|
|
| 237 |
if not TRANSFORMERS_AVAILABLE:
|
| 238 |
return "❌ Transformers non installé! Utilisez l'outil d'installation."
|
| 239 |
|
| 240 |
+
if not TORCH_AVAILABLE or not torch:
|
| 241 |
return "❌ PyTorch non installé! Utilisez l'outil d'installation."
|
| 242 |
|
| 243 |
if not model_name.strip():
|
|
|
|
| 288 |
|
| 289 |
def load_single_dataset(self, dataset_name: str, split: str = "train"):
|
| 290 |
"""Charge un dataset individuel"""
|
| 291 |
+
if not DATASETS_AVAILABLE or not load_dataset:
|
| 292 |
return "❌ Datasets non installé! Utilisez l'outil d'installation."
|
| 293 |
|
| 294 |
if not dataset_name.strip():
|
|
|
|
| 325 |
for i, step in enumerate(steps):
|
| 326 |
result += f"Étape {i+1}: {step} ✅\n"
|
| 327 |
|
| 328 |
+
if TORCH_AVAILABLE and TRANSFORMERS_AVAILABLE:
|
| 329 |
+
result += "\n✅ Prêt pour un vrai entraînement!"
|
| 330 |
+
else:
|
| 331 |
+
result += "\n⚠️ MODE DÉMO - Installez PyTorch + Transformers pour un vrai entraînement"
|
| 332 |
return result
|
| 333 |
|
| 334 |
def get_model_info(self):
|
|
|
|
| 338 |
|
| 339 |
info = f"📋 INFORMATIONS DU MODÈLE:\n\n"
|
| 340 |
info += f"🏷️ Type: {type(self.current_model).__name__}\n"
|
|
|
|
| 341 |
|
| 342 |
+
if TORCH_AVAILABLE and torch:
|
| 343 |
+
info += f"💾 Device: {next(self.current_model.parameters()).device}\n"
|
| 344 |
+
|
| 345 |
+
# Compte les paramètres
|
| 346 |
total_params = sum(p.numel() for p in self.current_model.parameters())
|
| 347 |
trainable_params = sum(p.numel() for p in self.current_model.parameters() if p.requires_grad)
|
| 348 |
|
|
|
|
| 390 |
|
| 391 |
install_status = gr.Textbox(
|
| 392 |
label="Status d'installation",
|
| 393 |
+
lines=8,
|
| 394 |
interactive=False
|
| 395 |
)
|
| 396 |
|
|
|
|
| 402 |
outputs=install_status
|
| 403 |
)
|
| 404 |
install_torch_btn.click(
|
| 405 |
+
lambda: trainer.install_dependencies(["torch"]),
|
| 406 |
outputs=install_status
|
| 407 |
)
|
| 408 |
install_datasets_btn.click(
|
|
|
|
| 419 |
with gr.Column():
|
| 420 |
model_input = gr.Textbox(
|
| 421 |
label="Nom du modèle HuggingFace",
|
| 422 |
+
placeholder="microsoft/DialoGPT-medium",
|
| 423 |
+
value="microsoft/DialoGPT-medium"
|
| 424 |
)
|
| 425 |
model_type = gr.Dropdown(
|
| 426 |
label="Type de modèle",
|
|
|
|
| 457 |
gr.Markdown("### 📝 Dataset individuel")
|
| 458 |
dataset_input = gr.Textbox(
|
| 459 |
label="Nom du dataset",
|
| 460 |
+
placeholder="wikitext",
|
| 461 |
+
value="wikitext"
|
| 462 |
+
)
|
| 463 |
+
dataset_config = gr.Textbox(
|
| 464 |
+
label="Configuration (optionnel)",
|
| 465 |
+
placeholder="wikitext-2-raw-v1"
|
| 466 |
)
|
| 467 |
dataset_split = gr.Textbox(
|
| 468 |
label="Split",
|
|
|
|
| 477 |
lines=12
|
| 478 |
)
|
| 479 |
|
| 480 |
+
def load_dataset_with_config(dataset_name, config_name, split):
|
| 481 |
+
if config_name.strip():
|
| 482 |
+
full_name = f"{dataset_name}/{config_name}" if "/" not in config_name else config_name
|
| 483 |
+
else:
|
| 484 |
+
full_name = dataset_name
|
| 485 |
+
return trainer.load_single_dataset(full_name, split)
|
| 486 |
+
|
| 487 |
load_dataset_btn.click(
|
| 488 |
+
load_dataset_with_config,
|
| 489 |
+
inputs=[dataset_input, dataset_config, dataset_split],
|
| 490 |
outputs=data_status
|
| 491 |
)
|
| 492 |
|