Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -29,26 +29,25 @@ end_sequence = "I hope that helps!"
|
|
| 29 |
|
| 30 |
def generate_key_points(text):
|
| 31 |
prompt = f"""
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
"""
|
| 52 |
return llm_client.text_generation(prompt, max_new_tokens=2000, stream=True, stop_sequences=[end_sequence])
|
| 53 |
|
| 54 |
|
|
@@ -173,11 +172,11 @@ def run_display(text):
|
|
| 173 |
current_output = ""
|
| 174 |
for output in generate_key_points(text):
|
| 175 |
current_output += output
|
| 176 |
-
yield None, "```
|
| 177 |
current_output = current_output.replace("</s>", "")
|
| 178 |
dataframe, _ = parse_llm_output(current_output)
|
| 179 |
map = create_map_from_markers(dataframe)
|
| 180 |
-
yield map, "```
|
| 181 |
|
| 182 |
|
| 183 |
def select_example(df, data: gr.SelectData):
|
|
|
|
| 29 |
|
| 30 |
def generate_key_points(text):
|
| 31 |
prompt = f"""
|
| 32 |
+
Please generate a set of key geographical points for the following description: {text}, as a json list of less than 10 dictionnaries with the following keys: 'name', 'description'.
|
| 33 |
+
Precise the full location in the 'name' if there is a possible ambiguity: for instance given that there are Chinatowns in several US cities, give the city name to disambiguate.
|
| 34 |
+
Generally try to minimize the distance between locations. Always think of the transportation means that you want to use, and the timing: morning, afternoon, where to sleep.
|
| 35 |
+
Only generate two sections: 'Thought:' provides your rationale for generating the points, then you list the locations in 'Key points:'.
|
| 36 |
+
Then generate '{end_sequence}' to indicate the end of the response.
|
| 37 |
+
|
| 38 |
+
For instance:
|
| 39 |
+
Description: {description_sf}
|
| 40 |
+
Thought: {output_example_sf}
|
| 41 |
+
{end_sequence}
|
| 42 |
+
|
| 43 |
+
Description: {description_loire}
|
| 44 |
+
Thought: {output_example_loire}
|
| 45 |
+
{end_sequence}
|
| 46 |
+
|
| 47 |
+
Now begin. You can make the descriptions a bit more verbose than in the examples.
|
| 48 |
+
|
| 49 |
+
Description: {text}
|
| 50 |
+
Thought:"""
|
|
|
|
| 51 |
return llm_client.text_generation(prompt, max_new_tokens=2000, stream=True, stop_sequences=[end_sequence])
|
| 52 |
|
| 53 |
|
|
|
|
| 172 |
current_output = ""
|
| 173 |
for output in generate_key_points(text):
|
| 174 |
current_output += output
|
| 175 |
+
yield None, "```text\n" + current_output + "\n```"
|
| 176 |
current_output = current_output.replace("</s>", "")
|
| 177 |
dataframe, _ = parse_llm_output(current_output)
|
| 178 |
map = create_map_from_markers(dataframe)
|
| 179 |
+
yield map, "```text\n" + current_output + "\n```"
|
| 180 |
|
| 181 |
|
| 182 |
def select_example(df, data: gr.SelectData):
|