Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,30 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from PIL import Image
|
| 3 |
-
import
|
| 4 |
|
| 5 |
# Load the pre-trained model from Hugging Face
|
| 6 |
model = gr.load("models/dima806/indian_food_image_detection")
|
| 7 |
|
| 8 |
def classify_image(image):
|
| 9 |
-
#
|
| 10 |
-
image
|
|
|
|
| 11 |
result = model(image)
|
| 12 |
|
| 13 |
# Parse the result to the format expected by Gradio's label component
|
| 14 |
-
predictions = result[0]
|
| 15 |
formatted_result = {pred["label"]: pred["score"] for pred in predictions}
|
| 16 |
-
|
| 17 |
return formatted_result
|
| 18 |
|
| 19 |
# Create a Gradio interface with the custom title
|
| 20 |
iface = gr.Interface(
|
| 21 |
fn=classify_image,
|
| 22 |
-
inputs=gr.Image(type="numpy"),
|
| 23 |
-
outputs=gr.Label(),
|
| 24 |
title="CAPSTONE",
|
| 25 |
-
description="Upload an image of Indian food to detect what it is."
|
| 26 |
-
live=True # Enable live processing
|
| 27 |
)
|
| 28 |
|
| 29 |
# Launch the Gradio interface
|
| 30 |
-
iface.launch(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from PIL import Image
|
| 3 |
+
import numpy as np
|
| 4 |
|
| 5 |
# Load the pre-trained model from Hugging Face
|
| 6 |
model = gr.load("models/dima806/indian_food_image_detection")
|
| 7 |
|
| 8 |
def classify_image(image):
|
| 9 |
+
# Ensure the image is in the correct format for the model
|
| 10 |
+
if isinstance(image, np.ndarray):
|
| 11 |
+
image = Image.fromarray(image)
|
| 12 |
result = model(image)
|
| 13 |
|
| 14 |
# Parse the result to the format expected by Gradio's label component
|
| 15 |
+
predictions = result[0] # Adjust this line based on the actual output structure
|
| 16 |
formatted_result = {pred["label"]: pred["score"] for pred in predictions}
|
| 17 |
+
|
| 18 |
return formatted_result
|
| 19 |
|
| 20 |
# Create a Gradio interface with the custom title
|
| 21 |
iface = gr.Interface(
|
| 22 |
fn=classify_image,
|
| 23 |
+
inputs=gr.Image(type="numpy", label="Upload an image"),
|
| 24 |
+
outputs=gr.Label(label="Prediction"),
|
| 25 |
title="CAPSTONE",
|
| 26 |
+
description="Upload an image of Indian food to detect what it is."
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
# Launch the Gradio interface
|
| 30 |
+
iface.launch()
|