Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- Dockerfile +15 -0
- anisol.py +66 -0
- requirements.txt +4 -0
Dockerfile
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
# Set working directory
|
| 4 |
+
WORKDIR /app
|
| 5 |
+
|
| 6 |
+
# Install dependencies
|
| 7 |
+
COPY requirements.txt .
|
| 8 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 9 |
+
|
| 10 |
+
# Copy application code
|
| 11 |
+
COPY app.py .
|
| 12 |
+
|
| 13 |
+
# Expose port and run app
|
| 14 |
+
EXPOSE 7860
|
| 15 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
anisol.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""AniSol.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1DiHMlxQx3QEAYivNMOl3olC8jj9mutCZ
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
from fastapi import FastAPI, Request
|
| 11 |
+
from pydantic import BaseModel
|
| 12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 13 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 14 |
+
import torch
|
| 15 |
+
|
| 16 |
+
app = FastAPI()
|
| 17 |
+
|
| 18 |
+
app.add_middleware(
|
| 19 |
+
CORSMiddleware,
|
| 20 |
+
allow_origins=["*"],
|
| 21 |
+
allow_credentials=True,
|
| 22 |
+
allow_methods=["*"],
|
| 23 |
+
allow_headers=["*"],
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
model_name = "nellaep/AniSolSenseiModel"
|
| 27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 28 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 29 |
+
model.eval()
|
| 30 |
+
|
| 31 |
+
sensitive_keywords = [
|
| 32 |
+
"suicide", "kill myself", "end my life", "self harm", "cutting",
|
| 33 |
+
"i want to die", "i want to disappear", "hurt myself", "life isn’t worth it",
|
| 34 |
+
"i can’t take it anymore", "no reason to live", "i hate living", "die", "i give up"
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
hotline_message = (
|
| 38 |
+
"Your life is valuable twin. If you're feeling overwhelmed, please reach out for help.\n"
|
| 39 |
+
"Call or text 988 (U.S. Suicide & Crisis Lifeline) for free, 24/7 support.\n"
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
class InputText(BaseModel):
|
| 43 |
+
input: str
|
| 44 |
+
|
| 45 |
+
@app.post("/generate")
|
| 46 |
+
async def generate_response(data: InputText):
|
| 47 |
+
user_input = data.input.lower()
|
| 48 |
+
|
| 49 |
+
if any(keyword in user_input for keyword in sensitive_keywords):
|
| 50 |
+
return {
|
| 51 |
+
"response": hotline_message
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
prompt = f"Input: {data.input}\nSensei: Kakashi\nOutput:"
|
| 55 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
| 56 |
+
with torch.no_grad():
|
| 57 |
+
output = model.generate(
|
| 58 |
+
**inputs,
|
| 59 |
+
max_new_tokens=100,
|
| 60 |
+
pad_token_id=tokenizer.eos_token_id
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 64 |
+
response = decoded.split("Output:")[-1].strip()
|
| 65 |
+
|
| 66 |
+
return {"response": response}
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
transformers
|
| 3 |
+
torch
|
| 4 |
+
uvicorn
|