import tensorflow.compat.v2 as tf import tensorflow_hub as hub import numpy as np import pandas as pd import cv2 from skimage import io m = hub.KerasLayer('https://tfhub.dev/google/aiy/vision/classifier/food_V1/1') labelmap_url = "https://www.gstatic.com/aihub/tfhub/labelmaps/aiy_food_V1_labelmap.csv" input_shape = (224, 224) def classify_image(inp): inp = inp.reshape((-1, 224, 224, 3)) output = m(images) predicted_index = output.numpy().argmax() classes = list(pd.read_csv(labelmap_url)["name"]) return {labels[i]: float(prediction[i]) for i in range(1000)} image = gr.inputs.Image(shape=(224, 224)) label = gr.outputs.Label(num_top_classes=3) gr.Interface( fn=classify_image, inputs=image, outputs=label, examples=[["isachertorte.png"], ["sandwich.jpg"]], ).launch()