prakashknaikade commited on
Commit
359520d
Β·
1 Parent(s): 96acacc

intial commit

Browse files
app.py CHANGED
@@ -1,11 +1,29 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
 
 
 
 
 
 
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -15,7 +33,26 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  for val in history:
21
  if val[0]:
@@ -23,8 +60,10 @@ def respond(
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
 
26
  messages.append({"role": "user", "content": message})
27
 
 
28
  response = ""
29
 
30
  for message in client.chat_completion(
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
+ # RAG imports
5
+ import os
6
+ from langchain.embeddings import HuggingFaceEmbeddings
7
+ from langchain.vectorstores import FAISS
8
+ from langchain.schema import Document
9
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
10
+
11
  """
12
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
13
  """
14
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
15
 
16
+ # We'll load the existing FAISS index at the start
17
+ INDEX_FOLDER = "faiss_index"
18
+ _vectorstore = None
19
+
20
+ def load_vectorstore():
21
+ """Loads FAISS index from local folder."""
22
+ global _vectorstore
23
+ if _vectorstore is None:
24
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
25
+ _vectorstore = FAISS.load_local(INDEX_FOLDER, embeddings, allow_dangerous_deserialization=True)
26
+ return _vectorstore
27
 
28
  def respond(
29
  message,
 
33
  temperature,
34
  top_p,
35
  ):
36
+ """
37
+ Called on each user message. We'll do a retrieval step (RAG)
38
+ to get relevant context, then feed it into the system message
39
+ before calling the InferenceClient.
40
+ """
41
+ # 1. Retrieve top documents from FAISS
42
+ vectorstore = load_vectorstore()
43
+ top_docs = vectorstore.similarity_search(message, k=3)
44
+
45
+ # Build context string from the docs
46
+ context_texts = []
47
+ for doc in top_docs:
48
+ context_texts.append(doc.page_content)
49
+ context_str = "\n".join(context_texts)
50
+
51
+ # 2. Augment the original system message with retrieved context
52
+ augmented_system_message = system_message + "\n\n" + f"Relevant context:\n{context_str}"
53
+
54
+ # 3. Convert (history) into messages
55
+ messages = [{"role": "system", "content": augmented_system_message }]
56
 
57
  for val in history:
58
  if val[0]:
 
60
  if val[1]:
61
  messages.append({"role": "assistant", "content": val[1]})
62
 
63
+ # Finally, add the new user message
64
  messages.append({"role": "user", "content": message})
65
 
66
+ # 4. Stream from the InferenceClient
67
  response = ""
68
 
69
  for message in client.chat_completion(
build_index.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # build_index.py
2
+ import os
3
+ import requests
4
+ from langchain_community.document_loaders import TextLoader, PyPDFLoader, UnstructuredURLLoader, UnstructuredHTMLLoader
5
+ from langchain_community.embeddings import HuggingFaceEmbeddings
6
+ from langchain_community.vectorstores import FAISS
7
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
8
+ from langchain.schema import Document
9
+ from langchain_community.docstore.document import Document as LCDocument
10
+
11
+ DOCS_PATH = "docs"
12
+ INDEX_PATH = "faiss_index"
13
+
14
+ def fetch_html_with_timeout(url: str, timeout=5) -> list[Document]:
15
+ """
16
+ Downloads the page content with a timeout, then parses it using UnstructuredHTMLLoader.
17
+ Returns a list of Documents (can be 1 or multiple if you want to split further).
18
+ """
19
+ try:
20
+ response = requests.get(url, timeout=timeout)
21
+ response.raise_for_status() # raise HTTPError if not 200
22
+ except Exception as e:
23
+ print(f"[Timeout/Fetch Error] Skipping {url}: {e}")
24
+ return []
25
+
26
+ # Write the HTML to a temporary file so we can load it with UnstructuredHTMLLoader
27
+ # (unstructured requires a file-like, we can do in-memory, but let's keep it simple)
28
+ temp_filename = "temp_html_file.html"
29
+ with open(temp_filename, "w", encoding="utf-8") as f:
30
+ f.write(response.text)
31
+
32
+ loader = UnstructuredHTMLLoader(temp_filename)
33
+ docs = loader.load() # returns a list of Document objects
34
+ for doc in docs:
35
+ doc.metadata["source"] = url
36
+ return docs
37
+
38
+ def load_web_docs(urls: list[str], timeout=5) -> list[Document]:
39
+ all_docs = []
40
+ for url in urls:
41
+ print(f"Fetching: {url}")
42
+ docs_from_url = fetch_html_with_timeout(url, timeout=timeout)
43
+ all_docs.extend(docs_from_url)
44
+ return all_docs
45
+
46
+ def load_documents(docs_path=DOCS_PATH):
47
+ all_docs = []
48
+
49
+ for file_name in os.listdir(docs_path):
50
+ file_path = os.path.join(docs_path, file_name)
51
+ print(f"Processing file: {file_name}") # Debug log
52
+
53
+ # 1) Text files
54
+ if file_name.lower().endswith(".txt"):
55
+ print(" -> Loading as .txt")
56
+ loader = TextLoader(file_path, encoding="utf-8")
57
+ loaded_docs = loader.load()
58
+ all_docs.extend(loaded_docs)
59
+ print(f" -> Loaded {len(loaded_docs)} docs from {file_name}")
60
+
61
+ # 2) PDF
62
+ elif file_name.lower().endswith(".pdf"):
63
+ print(" -> Loading as .pdf")
64
+ loader = PyPDFLoader(file_path)
65
+ pdf_docs = loader.load_and_split()
66
+ all_docs.extend(pdf_docs)
67
+ print(f" -> Loaded {len(pdf_docs)} docs from {file_name}")
68
+
69
+ # 3) URLs
70
+ elif file_name.lower().endswith(".urls"):
71
+ print(" -> Loading as .urls")
72
+ with open(file_path, "r", encoding="utf-8") as f:
73
+ urls = [line.strip() for line in f if line.strip()]
74
+ print(f" -> Found {len(urls)} URLs in {file_name}")
75
+ if urls:
76
+ web_docs = load_web_docs(urls, timeout=5)
77
+ print(f" -> Loaded {len(web_docs)} web docs from URLs")
78
+ all_docs.extend(web_docs)
79
+
80
+ else:
81
+ print(" -> Skipped: unrecognized file type.")
82
+
83
+ return all_docs
84
+
85
+ def build_faiss_index():
86
+ documents = load_documents()
87
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
88
+ splitted_docs = text_splitter.split_documents(documents)
89
+
90
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cuda"})
91
+ vectorstore = FAISS.from_documents(splitted_docs, embeddings)
92
+
93
+ os.makedirs(INDEX_PATH, exist_ok=True)
94
+ vectorstore.save_local(INDEX_PATH)
95
+ print(f"Vector index saved to {INDEX_PATH}")
96
+
97
+ if __name__ == "__main__":
98
+ build_faiss_index()
docs/Prakash_CV.pdf ADDED
Binary file (117 kB). View file
 
docs/biography.txt ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Prakash Naikade
2
+ Computer Vision & Machine Learning Engineer
3
+
4
+ PROFILE
5
+ I am passionate about Machine Learning, especially Computer Vision and Generative AI. I have hands-on experience
6
+ from academia and industry. My research interests span in the broad areas of 3D-Reconstruction, Scene Understanding,
7
+ Neural Rendering, Radiance Field, Motion Capture, Digital Twins, LLMs, AR/VR, and generally Computer Vision,
8
+ Computer Graphics, GenAI, Human Computer Interaction, Deep Learning, Machine Learning, and Data Science, to
9
+ solve real-world problems with impactful AI aided solutions.
10
+
11
+ EDUCATION
12
+ MS Media Informatics Saarland University, Germany
13
+ Oct 2020 – Present
14
+ Grade: 1.6/5.0 (1.0 being the best possible score)
15
+ Thesis: Novel View Synthesis of Structural Color Objects Created by Laser Markings. (1.3)
16
+ Relevant Courses: Computer Graphics, Image Processing & Computer Vision, Neural Networks: Theory & Implementation,
17
+ High-Level Computer Vision, Statistics with R, Adversarial Reinforcement Learning, Human Computer Interaction,
18
+ Games & Interactive Media.
19
+ [Audited]: Geometric Modeling, Machine Learning, AI, Ethics for Nerds
20
+
21
+ BEng Computer Engineering Pune University, India
22
+ June 2011 – May 2015
23
+ Grade: 65% (First Class)
24
+ Thesis: Secure Data Storage on Multi-Cloud Using DNA Based Cryptography.
25
+ Relevant Courses: Data Structures and Algorithms, Design & Analysis of Algorithms, Software Architecture, Software
26
+ Engineering, Software Testing & Quality Assurance, Microprocessors & Microcontrollers
27
+
28
+ PROFESSIONAL EXPERIENCE
29
+ Junior Researcher (HiWi) SaarbrΓΌcken, Germany
30
+ August-Wilhelm Scheer Institute
31
+ Sept 2023 – Dec 2024
32
+ β€’ Worked on several applied research projects, including MediHopps, iperMΓΆ, FlΓ€KI and VuLCAn.
33
+ β€’ Implemented advanced deep learning methods for human action recognition (HAR) and body pose estimation (HPE),
34
+ and delivered detailed performance evaluations of these models, along with a trained HAR model (ST-GCN++) for
35
+ custom rehabilitation exercise data captured in the lab.
36
+ β€’ Contributed significantly to the feature extraction, generation, and visualization of furniture functionalities in the
37
+ Python codebase for the iperMΓΆ project, developing an AR application to turn individual furniture wishes into reality.
38
+ β€’ Systematic Literature Research and Reviews, Project Proposals and Scientific Literature Writing.
39
+ β€’ Generally worked on computer vision, computer graphics, and machine/deep learning tasks like human pose esti-
40
+ mation, human action recognition, and some XR tasks.
41
+
42
+ Research Assistant SaarbrΓΌcken, Germany
43
+ AIDAM, Max Planck Institute for Informatics Advisor: Dr Vahid Babaei
44
+ July 2023 – Aug 2024
45
+ β€’ Worked on Radiance Field methods for Novel View Synthesis of structural color objects created by laser markings.
46
+ β€’ Benchmarked SOTA radiance methods for synthetic scene involving Structural Color Object created in Blender.
47
+ β€’ Developed capture setup to capture highly reflective and shiny structural color paintings on metal substrates.
48
+ β€’ Improved the scene optimization using geometric prior and Anisotropy Regularizer in 3D Gaussian-Splatting method.
49
+ β€’ Presented comprehensive experiments to demonstrate methods for simulating structural color objects before printing
50
+ them using only captured images of laser-printed primaries.
51
+ β€’ Facilitated interactive visualization of view-dependent structural color objects in web viewer.
52
+
53
+ Computer Vision Intern MΓΌnster, Germany
54
+ BASF-Coatings GmbH
55
+ March 2023 – May 2023
56
+ β€’ Developed dataset for adhesive test and corrosion detection on images of test panels of metal substrates.
57
+ β€’ Developed framework and trained YOLOv8 model for adhesive tests’ detection and UNet for corrosion detection
58
+ using created dataset for automation project.
59
+
60
+ Computer Vision Intern Aachen, Germany
61
+ Fenris GmbH
62
+ May 2022 – Sept 2023
63
+ β€’ Contributed to markerless motion capture solutions using single and multiple cameras for athlete motion tracking
64
+ and analysis.
65
+ β€’ Conducted a comprehensive literature research and review focused on deep learning approaches for human pose
66
+ estimation and benchmarked SOTA approaches for domain specific video data.
67
+ β€’ Worked on different tasks such as camera calibration, deep learning based human pose estimation & golf sequence
68
+ detection, estimating joint angles from 3D body poses, comparing two pose sequences and visualization of results
69
+ in Blender and Unity.
70
+
71
+ Indian Civil Services Exam Preparation
72
+ Jun 2015 – July 2019
73
+ During the preparation of this exam, I gained Under-Graduate level knowledge of Anthropology, Polity, Governance,
74
+ Indian Constitution, Social Justice, International Relations, Economics (Macro), Indian & World Geography, Indian &
75
+ World History, Indian Culture & Society, Environment, and Ethics. (Overall pass percentage of candidates β‰ˆ 0.1%)
76
+
77
+ SKILLS
78
+ β€’ Programming: Python, C#, C++, R, SQL, Matlab
79
+ β€’ Frameworks: PyTorch, TensorFlow, NumPy, Pandas, SKLearn, OpenCV, Open3D, Matplotlib, HuggingFace
80
+ β€’ Tools: Conda, Jupyter Notebook, Git, Unity, Blender, Metashape, Colmap, Meshlab, Docker, Slurm/HPC, DevOps
81
+ β€’ OS: Linux, Windows, Shell/Dos Scripting
82
+ β€’ Concepts: Regression, k-NN, k-Means Clustering, PCA, SVM, Neural Networks, CNN, RNN, LSTM, Transformers,
83
+ ViT, CLIP, Autoencoders, VAE, GAN, Diffusion Models, LLMs, NLP, GPT, Prompt Engineering, LangChain, 2D/3D
84
+ Image Processing, Object Detection, Classification, Localization, Segmentation, NeRF, 3DGS, 3D Reconstruction,
85
+ Scene Understanding, Scene Interaction, HCI, XR, Reinforcement Learning
86
+
87
+ PROJECTS
88
+ Learn-LLMs GenAI, Information Retrieval
89
+ Getting a hands-on experience of using different LLM models and tools, to understand the finetuning, data preparation,
90
+ evaluation & other techniques related to LLMs such as RAG.
91
+
92
+ Diffusion Models Computer Vision, GenAI
93
+ This Project is a basic implementation of Diffusion Model to understand how diffusion works.
94
+
95
+ Human Action Recognition (HAR) Computer Vision
96
+ Investigating the performance of different deep learning models and their ensembles used for HAR in still images.
97
+
98
+ Image Segmentation on PASCAL VOC and Cityscapes Datasets Computer Vision
99
+ Training and Evaluation of CNNs like UNet, RU-Net and R2U-Net for Image Segmentation.
100
+
101
+ COVID-19 Detection Computer Vision
102
+ TensorFlow implementation of model based on ResNet50 architecture for COVID-19 detection on Chest X-rays using
103
+ dataset sourced from Kaggle.
104
+
105
+ Object Detection Computer Vision
106
+ Training an object detection model on custom dataset (Oxford Pets dataset) using TensorFlow Object Detection API 2.
107
+
108
+ Easy Flappy Bird Game Development
109
+ An simple implementation of Flappy Bird game using Unity and C#.
110
+
111
+ Roman Villa Nennig Bot - Your virtual guide to Roman Villa Nennig NLP
112
+ This chatbot helps the user throughout their journey of visiting a museum of the Roman Villa Nennig, developed using
113
+ Google Cloud, Dialogflow Essentials and Telegram.
114
+
115
+ Ludwig Palette - an AR painting game AR/VR
116
+ App developed in Unity and C# allows visitors of Ludwigskirche to explore its architecture by painting on its surfaces
117
+ and understand the intricacies of sculptures inside the church.
118
+
119
+ Mini-RayTracer Computer Graphics
120
+ Simple ray tracing engine developed in C++.
121
+
122
+ Synthetic Dataset Computer Graphics
123
+ Generate simple 3D rendered datasets in Blender and Unity.
124
+
125
+ PUBLICATIONS
126
+ β€’ Secure Data Storage on Multi-Cloud Using DNA Based Cryptography. D Zingade, S Dhuri, P Naikade, N Gade,
127
+ A Teke, International Journal of Advance Engineering and Research Development March 2015
128
+
129
+ CERTIFICATIONS
130
+ β€’ Kaggle: Python, ML, Pandas, Feature Engineering, Data Visualization, Data Cleaning, SQL, Reinforcement Learning
131
+ & Game AI, Time Series
132
+ β€’ Udacity: C++, AWS ML Foundations
133
+ β€’ Coursera: Mathematics for Machine Learning and Data Science, Structuring ML Project, Neural Network and Deep
134
+ Learning, Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization
135
+ β€’ Udemy: Foundations of MR, XR, VR Development on Quest headsets with Meta’s Presence Platform and Unity.
136
+ β€’ DataCamp: Intermediate R, Data in R
137
+ β€’ Memgraph: Graph Analytics
138
+
139
+ LANGUAGES
140
+ English (Fluent), Hindi (Fluent), Marathi (Native), German (Elementary)
141
+
142
+ HOBBIES
143
+ Biking, Running, Hiking, Movies, Music
docs/websites.urls ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ https://www.linkedin.com/in/prakashknaikade/
2
+ https://prakashknaikade.github.io/
3
+
faiss_index/index.faiss ADDED
Binary file (83 kB). View file
 
faiss_index/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37c0a27bc965c078f14aa6d8bd9d7680624df804249cae9a5ed62867e1f9cb14
3
+ size 25988
temp_html_file.html ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!doctype html><html lang=en-us dir=ltr data-wc-theme-default=system><head><meta charset=utf-8><meta name=viewport content="width=device-width,initial-scale=1"><meta http-equiv=X-UA-Compatible content="IE=edge"><meta name=generator content="Hugo Blox Builder 0.2.0"><meta name=author content="Prakash Naikade"><meta name=description content="Computer Vision and Machine Learning Research Engineer"><link rel=alternate hreflang=en-us href=https://prakashknaikade.github.io/><link rel=stylesheet href=/css/themes/emerald.min.css><link href=/dist/wc.min.css rel=stylesheet><script>window.hbb={defaultTheme:document.documentElement.dataset.wcThemeDefault,setDarkTheme:()=>{document.documentElement.classList.add("dark"),document.documentElement.style.colorScheme="dark"},setLightTheme:()=>{document.documentElement.classList.remove("dark"),document.documentElement.style.colorScheme="light"}},console.debug(`Default Hugo Blox Builder theme is ${window.hbb.defaultTheme}`),"wc-color-theme"in localStorage?localStorage.getItem("wc-color-theme")==="dark"?window.hbb.setDarkTheme():window.hbb.setLightTheme():(window.hbb.defaultTheme==="dark"?window.hbb.setDarkTheme():window.hbb.setLightTheme(),window.hbb.defaultTheme==="system"&&(window.matchMedia("(prefers-color-scheme: dark)").matches?window.hbb.setDarkTheme():window.hbb.setLightTheme()))</script><script>document.addEventListener("DOMContentLoaded",function(){let e=document.querySelectorAll("li input[type='checkbox'][disabled]");e.forEach(e=>{e.parentElement.parentElement.classList.add("task-list")});const t=document.querySelectorAll(".task-list li");t.forEach(e=>{let t=Array.from(e.childNodes).filter(e=>e.nodeType===3&&e.textContent.trim().length>1);if(t.length>0){const n=document.createElement("label");t[0].after(n),n.appendChild(e.querySelector("input[type='checkbox']")),n.appendChild(t[0])}})})</script><meta name=google-site-verification content="r7kQZKpFugfcLYFKmXw2x6WeTqvzTsJZSEoBmKOpRNQ"><script async src="https://www.googletagmanager.com/gtag/js?id=G-QNP63QCJT3"></script><script>window.dataLayer=window.dataLayer||[];function gtag(){dataLayer.push(arguments)}function trackOutboundLink(e,t){gtag("event","click",{event_category:"outbound",event_label:e,transport_type:"beacon",event_callback:function(){t!=="_blank"&&(document.location=e)}}),console.debug("Outbound link clicked: "+e)}function onClickCallback(e){if(e.target.tagName!=="A"||e.target.host===window.location.host)return;trackOutboundLink(e.target,e.target.getAttribute("target"))}gtag("js",new Date),gtag("config","G-QNP63QCJT3",{}),gtag("set",{cookie_flags:"SameSite=None;Secure"}),document.addEventListener("click",onClickCallback,!1)</script><link rel=alternate href=/index.xml type=application/rss+xml title="Prakash Naikade"><link rel=icon type=image/png href=/media/icon_hu5efb93123565b269d61ea7706dd6c107_780703_32x32_fill_lanczos_center_3.png><link rel=apple-touch-icon type=image/png href=/media/icon_hu5efb93123565b269d61ea7706dd6c107_780703_180x180_fill_lanczos_center_3.png><link rel=canonical href=https://prakashknaikade.github.io/><meta property="twitter:card" content="summary"><meta property="twitter:site" content="@VR_iPrakash"><meta property="twitter:creator" content="@VR_iPrakash"><meta property="og:site_name" content="Prakash Naikade"><meta property="og:url" content="https://prakashknaikade.github.io/"><meta property="og:title" content="Prakash Naikade"><meta property="og:description" content="Computer Vision and Machine Learning Research Engineer"><meta property="og:image" content="https://prakashknaikade.github.io/media/icon_hu5efb93123565b269d61ea7706dd6c107_780703_512x512_fill_lanczos_center_3.png"><meta property="twitter:image" content="https://prakashknaikade.github.io/media/icon_hu5efb93123565b269d61ea7706dd6c107_780703_512x512_fill_lanczos_center_3.png"><meta property="og:locale" content="en-us"><meta property="og:updated_time" content="2022-10-24T00:00:00+00:00"><script type=application/ld+json>{"@context":"https://schema.org","@type":"WebSite","url":"https://prakashknaikade.github.io/"}</script><title>Prakash Naikade</title><style>@font-face{font-family:inter var;font-style:normal;font-weight:100 900;font-display:swap;src:url(/dist/font/Inter.var.woff2)format(woff2)}</style><link type=text/css rel=stylesheet href=/dist/pagefind/pagefind-ui.be766eb419317a14ec769d216e9779bfe8f3737c80e780f4ba0dafb57a41a482.css integrity="sha256-vnZutBkxehTsdp0hbpd5v+jzc3yA54D0ug2vtXpBpII="><script src=/dist/pagefind/pagefind-ui.87693d7c6f2b3b347ce359d0ede762c033419f0a32b22ce508c335a81d841f1b.js integrity="sha256-h2k9fG8rOzR841nQ7ediwDNBnwoysizlCMM1qB2EHxs="></script><script>window.hbb.pagefind={baseUrl:"/"}</script><style>html.dark{--pagefind-ui-primary:#eeeeee;--pagefind-ui-text:#eeeeee;--pagefind-ui-background:#152028;--pagefind-ui-border:#152028;--pagefind-ui-tag:#152028}</style><script>window.addEventListener("DOMContentLoaded",e=>{new PagefindUI({element:"#search",showSubResults:!0,baseUrl:window.hbb.pagefind.baseUrl,bundlePath:window.hbb.pagefind.baseUrl+"pagefind/"})}),document.addEventListener("DOMContentLoaded",()=>{let e=document.getElementById("search"),t=document.getElementById("search_toggle");t&&t.addEventListener("click",()=>{if(e.classList.toggle("hidden"),e.querySelector("input").value="",e.querySelector("input").focus(),!e.classList.contains("hidden")){let t=document.querySelector(".pagefind-ui__search-clear");t&&!t.hasAttribute("listenerOnClick")&&(t.setAttribute("listenerOnClick","true"),t.addEventListener("click",()=>{e.classList.toggle("hidden")}))}})})</script><link type=text/css rel=stylesheet href=/dist/lib/katex/katex.min.505d5f829022bb7b4f24dfee0aa1141cd7bba67afe411d1240335f820960b5c3.css integrity="sha256-UF1fgpAiu3tPJN/uCqEUHNe7pnr+QR0SQDNfgglgtcM="><script defer src=/dist/lib/katex/katex.min.dc84b296ec3e884de093158f760fd9d45b6c7abe58b5381557f4e138f46a58ae.js integrity="sha256-3ISyluw+iE3gkxWPdg/Z1Ftser5YtTgVV/ThOPRqWK4="></script><script defer src=/js/katex-renderer.6579ec9683211cfb952064aedf3a3baea5eeb17a061775b32b70917474637c80.js integrity="sha256-ZXnsloMhHPuVIGSu3zo7rqXusXoGF3WzK3CRdHRjfIA="></script><script defer src=/js/hugo-blox-en.min.e5fa931947cac2d947732ea37a770aae2b5bd4a50b6048060cd129b46159a06d.js integrity="sha256-5fqTGUfKwtlHcy6jencKritb1KULYEgGDNEptGFZoG0="></script><script async defer src=https://buttons.github.io/buttons.js></script></head><body class="dark:bg-hb-dark dark:text-white page-wrapper" id=top><div id=page-bg></div><div class="page-header sticky top-0 z-30"><header id=site-header class=header><nav class="navbar px-3 flex justify-left"><div class="order-0 h-100"><a class=navbar-brand href=/ title="Prakash Naikade">ΰ€ͺΰ₯ΰ€°ΰ€•ΰ€Ύΰ€Ά</a></div><input id=nav-toggle type=checkbox class=hidden>
2
+ <label for=nav-toggle class="order-3 cursor-pointer flex items-center lg:hidden text-dark dark:text-white lg:order-1"><svg id="show-button" class="h-6 fill-current block" viewBox="0 0 20 20"><title>Open Menu</title><path d="M0 3h20v2H0V3zm0 6h20v2H0V9zm0 6h20v2H0V0z"/></svg><svg id="hide-button" class="h-6 fill-current hidden" viewBox="0 0 20 20"><title>Close Menu</title><polygon points="11 9 22 9 22 11 11 11 11 22 9 22 9 11 -2 11 -2 9 9 9 9 -2 11 -2" transform="rotate(45 10 10)"/></svg></label><ul id=nav-menu class="navbar-nav order-3 hidden lg:flex w-full pb-6 lg:order-1 lg:w-auto lg:space-x-2 lg:pb-0 xl:space-x-8 justify-left"><li class=nav-item><a class="nav-link active" href=/>Bio</a></li><li class=nav-item><a class=nav-link href=/#papers>Papers</a></li><li class=nav-item><a class=nav-link href=/#ama>AMA</a></li><li class=nav-item><a class=nav-link href=/#news>News</a></li><li class=nav-item><a class=nav-link href=/experience/>Experience</a></li><li class=nav-item><a class=nav-link href=/projects/>Projects</a></li><li class=nav-item><a class=nav-link href=/teaching/>Teaching</a></li></ul><div class="order-1 ml-auto flex items-center md:order-2 lg:ml-0"><button aria-label=search class="text-black hover:text-primary inline-block px-3 text-xl dark:text-white" id=search_toggle><svg xmlns="http://www.w3.org/2000/svg" height="16" width="16" viewBox="0 0 512 512" fill="currentcolor"><path d="M416 208c0 45.9-14.9 88.3-40 122.7L502.6 457.4c12.5 12.5 12.5 32.8.0 45.3s-32.8 12.5-45.3.0L330.7 376c-34.4 25.2-76.8 40-122.7 40C93.1 416 0 322.9.0 208S93.1.0 208 0 416 93.1 416 208zM208 352a144 144 0 100-288 144 144 0 100 288z"/></svg></button><div class="px-3 text-black hover:text-primary-700 dark:text-white dark:hover:text-primary-300
3
+ [&.active]:font-bold [&.active]:text-black/90 dark:[&.active]:text-white"><button class="theme-toggle mt-1" accesskey=t title=appearance><svg id="moon" xmlns="http://www.w3.org/2000/svg" width="24" height="18" viewBox="0 0 24 24" fill="none" stroke="currentcolor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="dark:hidden"><path d="M21 12.79A9 9 0 1111.21 3 7 7 0 0021 12.79z"/></svg><svg id="sun" xmlns="http://www.w3.org/2000/svg" width="24" height="18" viewBox="0 0 24 24" fill="none" stroke="currentcolor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="dark:block [&:not(dark)]:hidden"><circle cx="12" cy="12" r="5"/><line x1="12" y1="1" x2="12" y2="3"/><line x1="12" y1="21" x2="12" y2="23"/><line x1="4.22" y1="4.22" x2="5.64" y2="5.64"/><line x1="18.36" y1="18.36" x2="19.78" y2="19.78"/><line x1="1" y1="12" x2="3" y2="12"/><line x1="21" y1="12" x2="23" y2="12"/><line x1="4.22" y1="19.78" x2="5.64" y2="18.36"/><line x1="18.36" y1="5.64" x2="19.78" y2="4.22"/></svg></button></div></div></nav></header><div id=search class="hidden p-3"></div></div><div class=page-body><section id=section-resume-biography-3 class="relative hbb-section blox-resume-biography-3 dark" style="padding:2rem 0"><div class="home-section-bg bg-image" style=background-color:#000;background-image:url(https://prakashknaikade.github.io/media/stacked-peaks.svg);background-size:cover;background-position:50%;filter:brightness(1)></div><div class="resume-biography px-3 flex flex-col md:flex-row justify-center gap-12"><div class="flex-none m-w-[130px] mx-auto md:mx-0"><div id=profile class="flex justify-center items-center flex-col"><div class="avatar-wrapper mt-10"><img class="avatar rounded-full bg-white dark:bg-gray-800 p-1" src=/author/prakash-naikade/avatar_hu5efb93123565b269d61ea7706dd6c107_780703_150x150_fill_q80_lanczos_center.jpg alt="Prakash Naikade" width=150 height=150>
4
+ <span class=avatar-emoji>πŸ“½</span></div><div class="portrait-title dark:text-white"><div class="text-3xl font-bold mb-2 mt-6">Prakash Naikade</div><h3 class="font-semibold mb-1">Computer Vision and Machine Learning<br>Research Engineer</h3><div class=mb-2><a href=https://www.mpi-inf.mpg.de/home target=_blank rel=noopener><div>Max Planck Institute for Informatics</div></a></div><div class=mb-2><a href=https://saarland-informatics-campus.de/en/ target=_blank rel=noopener><div>Saarland University</div></a></div></div><ul class="network-icon dark:text-zinc-100"><li><a href=mailto:[email protected] aria-label=at-symbol data-toggle=tooltip data-placement=top title="E-mail Me"><svg style="height:1.5rem" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path fill="none" stroke="currentcolor" stroke-linecap="round" stroke-width="1.5" d="M16.5 12a4.5 4.5.0 11-9 0 4.5 4.5.0 019 0zm0 0c0 1.657 1.007 3 2.25 3S21 13.657 21 12a9 9 0 10-2.636 6.364M16.5 12V8.25"/></svg></a></li><li><a href=https://twitter.com/VR_iPrakash target=_blank rel=noopener aria-label=brands/x><svg style="height:1.5rem" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentcolor" d="M389.2 48h70.6L305.6 224.2 487 464H345L233.7 318.6 106.5 464H35.8L200.7 275.5 26.8 48H172.4L272.9 180.9 389.2 48zM364.4 421.8h39.1L151.1 88h-42L364.4 421.8z"/></svg></a></li><li><a href=https://www.instagram.com/insta.pkn/ target=_blank rel=noopener aria-label=brands/instagram><svg style="height:1.5rem" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 15 15"><path fill="currentcolor" fill-rule="evenodd" d="M12.91 12.909c.326-.327.582-.72.749-1.151.16-.414.27-.886.302-1.578.032-.693.04-.915.04-2.68.0-1.765-.008-1.987-.04-2.68-.032-.692-.142-1.164-.302-1.578a3.185 3.185.0 00-.75-1.151 3.187 3.187.0 00-1.151-.75c-.414-.16-.886-.27-1.578-.302C9.487 1.007 9.265 1 7.5 1c-1.765.0-1.987.007-2.68.04-.692.03-1.164.14-1.578.301a3.2 3.2.0 00-1.151.75 3.2 3.2.0 00-.75 1.151c-.16.414-.27.886-.302 1.578C1.007 5.513 1 5.735 1 7.5s.007 1.987.04 2.68c.03.692.14 1.164.301 1.578.164.434.42.826.75 1.151.325.33.718.586 1.151.75.414.16.886.27 1.578.302.693.031.915.039 2.68.039s1.987-.008 2.68-.04c.692-.03 1.164-.14 1.578-.301a3.323 3.323.0 001.151-.75zM2 6.735v1.53c-.002.821-.002 1.034.02 1.5.026.586.058 1.016.156 1.34.094.312.199.63.543 1.012.344.383.675.556 1.097.684.423.127.954.154 1.415.175.522.024.73.024 1.826.024H8.24c.842.001 1.054.002 1.526-.02.585-.027 1.015-.059 1.34-.156.311-.094.629-.2 1.011-.543.383-.344.556-.676.684-1.098.127-.422.155-.953.176-1.414C13 9.247 13 9.04 13 7.947v-.89c0-1.096.0-1.303-.023-1.826-.021-.461-.049-.992-.176-1.414-.127-.423-.3-.754-.684-1.098-.383-.344-.7-.449-1.011-.543-.325-.097-.755-.13-1.34-.156A27.29 27.29.0 008.24 2H7.057c-1.096.0-1.304.0-1.826.023-.461.021-.992.049-1.415.176-.422.128-.753.301-1.097.684s-.45.7-.543 1.012c-.098.324-.13.754-.156 1.34-.022.466-.022.679-.02 1.5zM7.5 5.25a2.25 2.25.0 100 4.5 2.25 2.25.0 000-4.5zM4.25 7.5a3.25 3.25.0 116.5.0 3.25 3.25.0 01-6.5.0zm6.72-2.72a.75.75.0 100-1.5.75.75.0 000 1.5z" clip-rule="evenodd"/></svg></a></li><li><a href=https://github.com/prakashknaikade target=_blank rel=noopener aria-label=brands/github><svg style="height:1.5rem" fill="currentcolor" viewBox="3 3 18 18"><path d="M12 3C7.0275 3 3 7.12937 3 12.2276c0 4.0833 2.57625 7.5321 6.15374 8.7548C9.60374 21.0631 9.77249 20.7863 9.77249 20.5441 9.77249 20.3249 9.76125 19.5982 9.76125 18.8254 7.5 19.2522 6.915 18.2602 6.735 17.7412 6.63375 17.4759 6.19499 16.6569 5.8125 16.4378 5.4975 16.2647 5.0475 15.838 5.80124 15.8264 6.51 15.8149 7.01625 16.4954 7.18499 16.7723 7.99499 18.1679 9.28875 17.7758 9.80625 17.5335 9.885 16.9337 10.1212 16.53 10.38 16.2993 8.3775 16.0687 6.285 15.2728 6.285 11.7432c0-1.0035.34875-1.834.92249-2.47994C7.1175 9.03257 6.8025 8.08674 7.2975 6.81794c0 0 .753749999999999-.24223 2.47499.94583.72001-.20762 1.48501-.31143 2.25001-.31143C12.7875 7.45234 13.5525 7.55615 14.2725 7.76377c1.7212-1.19959 2.475-.94583 2.475-.94583C17.2424 8.08674 16.9275 9.03257 16.8375 9.26326 17.4113 9.9092 17.76 10.7281 17.76 11.7432c0 3.5411-2.1037 4.3255-4.1063 4.5561C13.98 16.5877 14.2613 17.1414 14.2613 18.0065 14.2613 19.2407 14.25 20.2326 14.25 20.5441 14.25 20.7863 14.4188 21.0746 14.8688 20.9824 16.6554 20.364 18.2079 19.1866 19.3078 17.6162c1.0999-1.5705 1.6917-3.4551 1.6922-5.3886C21 7.12937 16.9725 3 12 3z"/></svg></a></li><li><a href=https://www.linkedin.com/in/prakashknaikade/ target=_blank rel=noopener aria-label=brands/linkedin><svg style="height:1.5rem" xmlns="http://www.w3.org/2000/svg" height="1em" viewBox="0 0 448 512"><path fill="currentcolor" d="M416 32H31.9C14.3 32 0 46.5.0 64.3v383.4C0 465.5 14.3 480 31.9 480H416c17.6.0 32-14.5 32-32.3V64.3c0-17.8-14.4-32.3-32-32.3zM135.4 416H69V202.2h66.5V416zm-33.2-243c-21.3.0-38.5-17.3-38.5-38.5S80.9 96 102.2 96c21.2.0 38.5 17.3 38.5 38.5.0 21.3-17.2 38.5-38.5 38.5zm282.1 243h-66.4V312c0-24.8-.5-56.7-34.5-56.7-34.6.0-39.9 27-39.9 54.9V416h-66.4V202.2h63.7v29.2h.9c8.9-16.8 30.6-34.5 62.9-34.5 67.2.0 79.7 44.3 79.7 101.9V416z"/></svg></a></li><li><a href="https://scholar.google.com/citations?user=3pyPb_QAAAAJ&amp;hl=en" target=_blank rel=noopener aria-label=academicons/google-scholar><svg style="height:1.5rem" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentcolor" d="M343.759 106.662V79.43L363.524 64h-213.89L20.476 176.274h85.656a82.339 82.339.0 00-.219 6.225c0 20.845 7.22 38.087 21.672 51.861 14.453 13.797 32.252 20.648 53.327 20.648 4.923.0 9.75-.368 14.438-1.024-2.907 6.5-4.374 12.523-4.374 18.142.0 9.875 4.499 20.43 13.467 31.642-39.234 2.67-68.061 9.732-86.437 21.163-10.531 6.5-19 14.704-25.39 24.531-6.391 9.9-9.578 20.515-9.578 31.962.0 9.648 2.062 18.336 6.219 26.062 4.156 7.726 9.578 14.07 16.312 18.984 6.718 4.968 14.469 9.101 23.219 12.469 8.734 3.344 17.406 5.718 26.061 7.062A167.052 167.052.0 00180.555 448c13.469.0 26.953-1.734 40.547-5.187 13.562-3.485 26.28-8.642 38.171-15.493 11.86-6.805 21.515-16.086 28.922-27.718 7.39-11.68 11.094-24.805 11.094-39.336.0-11.016-2.25-21.039-6.75-30.14-4.468-9.073-9.938-16.542-16.452-22.345-6.501-5.813-13-11.155-19.516-15.968-6.5-4.845-12-9.75-16.468-14.813-4.485-5.046-6.735-10.054-6.735-14.984.0-4.921 1.734-9.672 5.216-14.265 3.455-4.61 7.674-9.048 12.61-13.306 4.937-4.25 9.875-8.968 14.796-14.133 4.922-5.147 9.141-11.827 12.61-20.008 3.485-8.18 5.203-17.445 5.203-27.757.0-13.453-2.547-24.46-7.547-33.314-.594-1.022-1.218-1.803-1.875-3.022l56.907-46.672v17.119c-7.393.93-6.624 5.345-6.624 10.635V245.96c0 5.958 4.875 10.834 10.834 10.834h3.989c5.958.0 10.833-4.875 10.833-10.834V117.293c0-5.277.778-9.688-6.561-10.63zm-107.36 222.48c1.14.75 3.704 2.78 7.718 6.038 4.05 3.243 6.797 5.695 8.266 7.414a443.553 443.553.0 016.376 7.547c2.813 3.375 4.718 6.304 5.718 8.734 1 2.477 2.016 5.461 3.047 8.946a38.27 38.27.0 011.485 10.562c0 17.048-6.564 29.68-19.656 37.859-13.125 8.18-28.767 12.274-46.938 12.274-9.187.0-18.203-1.093-27.063-3.196-8.843-2.116-17.311-5.336-25.39-9.601-8.078-4.258-14.577-10.204-19.5-17.797-4.938-7.64-7.407-16.415-7.407-26.25.0-10.32 2.797-19.29 8.422-26.906 5.594-7.625 12.938-13.391 22.032-17.315 9.063-3.946 18.25-6.742 27.562-8.398a157.865 157.865.0 0128.438-2.555c4.47.0 7.936.25 10.405.696.455.219 3.032 2.07 7.735 5.563 4.704 3.462 7.625 5.595 8.75 6.384zm-3.359-100.579c-7.406 8.86-17.734 13.288-30.953 13.288-11.86.0-22.298-4.764-31.266-14.312-9-9.523-15.422-20.328-19.344-32.43-3.937-12.109-5.906-23.984-5.906-35.648.0-13.694 3.596-25.352 10.781-34.976 7.187-9.65 17.5-14.485 30.938-14.485 11.875.0 22.374 5.038 31.437 15.157 9.094 10.085 15.61 21.413 19.517 33.968 3.922 12.54 5.873 24.53 5.873 35.984.0 13.446-3.702 24.61-11.076 33.454z"/></svg></a></li></ul></div></div><div class="flex-auto max-w-prose md:mt-12"><div class="pt-2 justify-content-center prose prose-slate dark:prose-invert"><div class=bio-text><h2 id=about-me>About Me</h2><p>Prakash Naikade is Computer Vision and Machine Learning Research Engineer. He is passionate about Machine Learning, especially Computer Vision & Generative AI. He has hands on experience from academia and industry. His research interests are in Computer Vision, Computer Graphics, LLMs, Human Computer Interaction, Deep/Machine Learning & Data Science, to solve real world problems with impactful AI aided solutions.<br>In his free time, he likes to run, bike, hike, watch movies, and listen to music.</p></div></div><a href=uploads/resume.pdf target=_blank class="inline-flex items-center px-4 py-2 text-sm font-medium text-gray-900 bg-white border border-gray-200 rounded-lg hover:bg-gray-100 hover:text-primary-700 focus:z-10 focus:ring-4 focus:outline-none focus:ring-gray-200 focus:text-primary-700 dark:bg-gray-800 dark:text-gray-400 dark:border-gray-600 dark:hover:text-white dark:hover:bg-gray-700 dark:focus:ring-gray-700"><svg class="w-3.5 h-3.5 me-2.5" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="currentcolor" viewBox="0 0 20 20"><path d="M14.707 7.793a1 1 0 00-1.414.0L11 10.086V1.5a1 1 0 00-2 0v8.586L6.707 7.793A1 1 0 105.293 9.207l4 4a1 1 0 001.416.0l4-4a1 1 0 00-.002-1.414z"/><path d="M18 12h-2.55l-2.975 2.975a3.5 3.5.0 01-4.95.0L4.55 12H2a2 2 0 00-2 2v4a2 2 0 002 2h16a2 2 0 002-2v-4a2 2 0 00-2-2zm-3 5a1 1 0 110-2 1 1 0 010 2z"/></svg> Download CV</a><div class="grid grid-cols-2 gap-4 justify-between mt-6 dark:text-gray-300"><div><div class="section-subheading mb-3">Interests</div><ul class="list-disc list-inside space-y-1 pl-5"><li>Computer Vision</li><li>Computer Graphics</li><li>LLMs</li><li>Deep/Machine Learning</li><li>AR/VR, HCI</li><li>Data Science, AI</li></ul></div><div><div class="section-subheading mb-3">Education</div><ul><li class="flex items-start gap-3"><svg style="" class="flex-shrink-0 w-5 h-5 me-2 mt-1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path fill="none" stroke="currentcolor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" d="M4.26 10.147a60.436 60.436.0 00-.491 6.347A48.627 48.627.0 0112 20.904a48.627 48.627.0 018.232-4.41 60.46 60.46.0 00-.491-6.347m-15.482.0a50.57 50.57.0 00-2.658-.813A59.905 59.905.0 0112 3.493a59.902 59.902.0 0110.399 5.84 51.39 51.39.0 00-2.658.814m-15.482.0A50.697 50.697.0 0112 13.489a50.702 50.702.0 017.74-3.342M6.75 15a.75.75.0 100-1.5.75.75.0 000 1.5m0 0v-3.675A55.378 55.378.0 0112 8.443m-7.007 11.55A5.981 5.981.0 006.75 15.75v-1.5"/></svg><div class=description><p class=course>Master Media Informatics</p><p class=text-sm>Saarland University</p></div></li><li class="flex items-start gap-3"><svg style="" class="flex-shrink-0 w-5 h-5 me-2 mt-1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path fill="none" stroke="currentcolor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" d="M4.26 10.147a60.436 60.436.0 00-.491 6.347A48.627 48.627.0 0112 20.904a48.627 48.627.0 018.232-4.41 60.46 60.46.0 00-.491-6.347m-15.482.0a50.57 50.57.0 00-2.658-.813A59.905 59.905.0 0112 3.493a59.902 59.902.0 0110.399 5.84 51.39 51.39.0 00-2.658.814m-15.482.0A50.697 50.697.0 0112 13.489a50.702 50.702.0 017.74-3.342M6.75 15a.75.75.0 100-1.5.75.75.0 000 1.5m0 0v-3.675A55.378 55.378.0 0112 8.443m-7.007 11.55A5.981 5.981.0 006.75 15.75v-1.5"/></svg><div class=description><p class=course>BEng Computer Engineering</p><p class=text-sm>Pune University</p></div></li></ul></div></div></div></div></section><section id=section-markdown class="relative hbb-section blox-markdown" style="padding:2rem 0"><div class=home-section-bg></div><div class="flex flex-col items-center max-w-prose mx-auto gap-3 justify-center"><div class="mb-6 text-3xl font-bold text-gray-900 dark:text-white">πŸ“š My Research</div><div class="prose prose-slate lg:prose-xl dark:prose-invert max-w-prose"><p>I am junior researcher at August-Wilhelm Scheer Institute. I worked on my master thesis at Max Planck Institute for Informatics.</p><p>My research interests span in the broad areas of Neural Rendering, Radiance Field Methods, Novel View Synthesis, Motion Capture, 3D-Reconstruction, Scene Understanding, Scene Interaction, Digital Twins, AR/VR, GenAI, LLMs, and generally Computer Vision, Computer Graphics, HCI, Deep/Machine Learning & Data Science, to solve the real world problems with impactful AI aided solutions.</p><p>Please reach out to collaborate πŸ˜ƒ</p></div></div></section><section id=papers class="relative hbb-section blox-collection" style="padding:2rem 0"><div class=home-section-bg></div><div class="flex flex-col items-center max-w-prose mx-auto gap-3 justify-center"><div class="mb-6 text-3xl font-bold text-gray-900 dark:text-white">πŸ“Œ Featured Publications</div></div><div class="flex flex-col items-center"><div class="container px-8 mx-auto xl:px-5 py-5 lg:py-8 max-w-screen-lg"><div class="grid gap-10 md:grid-cols-2 lg:gap-10"><div class="group cursor-pointer"><div class="overflow-hidden rounded-md bg-gray-100 transition-all hover:scale-105 dark:bg-gray-800"><a class="relative block aspect-video" href=/publications/nvs_structural_color_object/><img alt="Novel View Synthesis of Structural Color Objects Created by Laser Markings" class="object-fill transition-all" data-nimg=fill decoding=async fetchpriority=high height=540 loading=lazy src=/publications/nvs_structural_color_object/pipeline_gsplat_hu96489e5fcef0c77704c1632d7669e979_114204_1fc6cd3f9e680b12ea1b5c744a1490c9.webp style=position:absolute;height:100%;width:100%;inset:0;color:transparent width=960></a></div><div><div><div class="flex gap-3"><a href=/tags/novel-view-synthesis/><span class="inline-block text-xs font-medium tracking-wider uppercase mt-5 text-primary-700 dark:text-primary-300">Novel View Synthesis</span></a></div><h2 class="text-lg font-semibold leading-snug tracking-tight mt-2 dark:text-white"><a href=/publications/nvs_structural_color_object/><span class="bg-gradient-to-r from-primary-200 to-primary-100 bg-[length:0px_10px] bg-left-bottom bg-no-repeat transition-[background-size] duration-500 hover:bg-[length:100%_3px] group-hover:bg-[length:100%_10px] dark:from-primary-800 dark:to-primary-900">Novel View Synthesis of Structural Color Objects Created by Laser Markings</span></a></h2><div class=grow><p class="mt-2 line-clamp-3 text-sm text-gray-500 dark:text-gray-400"><a href=/publications/nvs_structural_color_object/>This work marks the beginning of novel view synthesis for structural color objects and opens up potential avenues for various future research directions and endeavors. Moreover, this thesis will act as a foundational guide for novice researchers interested in exploring the novel view synthesis of specular and shiny objects with high view-dependent colors, commonly referred to as Structural Colors and Pearlescent Colors.</a></p></div><div class=flex-none><div class="mt-3 flex items-center space-x-3 text-gray-500 dark:text-gray-400 cursor-default"><time class="truncate text-sm" datetime=2024-08-08>Aug 8, 2024</time></div></div></div></div></div><div class="group cursor-pointer"><div class="overflow-hidden rounded-md bg-gray-100 transition-all hover:scale-105 dark:bg-gray-800"><a class="relative block aspect-video" href=/publications/dna_based_cryptography/><img alt="Secure Data Storage on Multi-Cloud Using DNA Based Cryptography" class="object-fill transition-all" data-nimg=fill decoding=async fetchpriority=high height=540 loading=lazy src=/publications/dna_based_cryptography/featured_hu039fe7ded9e1ba0553f85e9e483f7848_223565_18c0a9ddd37a9a74074a1a294b75c01d.webp style=position:absolute;height:100%;width:100%;inset:0;color:transparent width=960></a></div><div><div><div class="flex gap-3"><a href=/tags/dna-based-cryptography/><span class="inline-block text-xs font-medium tracking-wider uppercase mt-5 text-primary-700 dark:text-primary-300">DNA Based Cryptography</span></a></div><h2 class="text-lg font-semibold leading-snug tracking-tight mt-2 dark:text-white"><a href=/publications/dna_based_cryptography/><span class="bg-gradient-to-r from-primary-200 to-primary-100 bg-[length:0px_10px] bg-left-bottom bg-no-repeat transition-[background-size] duration-500 hover:bg-[length:100%_3px] group-hover:bg-[length:100%_10px] dark:from-primary-800 dark:to-primary-900">Secure Data Storage on Multi-Cloud Using DNA Based Cryptography</span></a></h2><div class=grow><p class="mt-2 line-clamp-3 text-sm text-gray-500 dark:text-gray-400"><a href=/publications/dna_based_cryptography/>This paper demonstrates use of DNA based cryptography to ensure secure data storage on multi-cloud to address service availability failure risks and possibilities of malicious attack.</a></p></div><div class=flex-none><div class="mt-3 flex items-center space-x-3 text-gray-500 dark:text-gray-400 cursor-default"><time class="truncate text-sm" datetime=2015-03-01>Mar 1, 2015</time></div></div></div></div></div></div></div></div></section><section id=section-collection class="relative hbb-section blox-collection" style="padding:2rem 0"><div class=home-section-bg></div><div class="flex flex-col items-center max-w-prose mx-auto gap-3 justify-center"><div class="mb-6 text-3xl font-bold text-gray-900 dark:text-white">πŸ“œ Recent Publications</div></div><div class="flex flex-col items-center"><div class="mt-16 sm:mt-20 container max-w-3xl w-full"><div class="flex flex-col space-y-3"><div class="pub-list-item view-citation" style=margin-bottom:1rem><i class="far fa-file-alt pub-icon" aria-hidden=true></i>
5
+ <span class="article-metadata li-cite-author"><span class=font-bold>Prakash Naikade</span>
6
+ </span>(2024).
7
+ <a href=/publications/nvs_structural_color_object/ class=underline>Novel View Synthesis of Structural Color Objects Created by Laser Markings</a>.
8
+ (MASTER THESIS).<div class="flex space-x-3"><a class="hb-attachment-link hb-attachment-small" href=/publications/nvs_structural_color_object/NVS_Structural_Color_Objects_compressed.pdf target=_blank rel=noopener><svg style="height:1em" class="inline-block" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path fill="none" stroke="currentcolor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" d="M19.5 14.25v-2.625A3.375 3.375.0 0016.125 8.25h-1.5A1.125 1.125.0 0113.5 7.125v-1.5A3.375 3.375.0 0010.125 2.25H8.25m0 12.75h7.5m-7.5 3H12M10.5 2.25H5.625c-.621.0-1.125.504-1.125 1.125v17.25c0 .621.504 1.125 1.125 1.125h12.75c.621.0 1.125-.504 1.125-1.125V11.25a9 9 0 00-9-9"/></svg>
9
+ PDF
10
+ </a><a class="hb-attachment-link hb-attachment-small" href="https://www.dropbox.com/scl/fo/9btslfn5y71lb6ct4jy62/AJ-6C-8QmycAND85arMPBDQ?rlkey=tqq444p2k608el58aoq5tzbvf&amp;e=1&amp;st=qcq9xn97&amp;dl=0" target=_blank rel=noopener><svg style="height:1em" class="inline-block" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path fill="none" stroke="currentcolor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" d="M20.25 6.375c0 2.278-3.694 4.125-8.25 4.125S3.75 8.653 3.75 6.375m16.5.0c0-2.278-3.694-4.125-8.25-4.125S3.75 4.097 3.75 6.375m16.5.0v11.25c0 2.278-3.694 4.125-8.25 4.125s-8.25-1.847-8.25-4.125V6.375m16.5.0v3.75m-16.5-3.75v3.75m16.5.0v3.75C20.25 16.153 16.556 18 12 18s-8.25-1.847-8.25-4.125v-3.75m16.5.0c0 2.278-3.694 4.125-8.25 4.125s-8.25-1.847-8.25-4.125"/></svg>
11
+ Dataset
12
+ </a><a class="hb-attachment-link hb-attachment-small" href=/publications/nvs_structural_color_object/taylor_simulation_2.mp4 target=_blank rel=noopener><svg style="height:1em" class="inline-block" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path fill="none" stroke="currentcolor" stroke-linecap="round" stroke-width="1.5" d="m15.75 10.5 4.72-4.72a.75.75.0 011.28.53v11.38a.75.75.0 01-1.28.53l-4.72-4.72M4.5 18.75h9a2.25 2.25.0 002.25-2.25v-9A2.25 2.25.0 0013.5 5.25h-9A2.25 2.25.0 002.25 7.5v9a2.25 2.25.0 002.25 2.25z"/></svg>
13
+ Video
14
+ </a><a class="hb-attachment-link hb-attachment-small" href=https://prakashknaikade.github.io/StructColorPaintingViewer/ target=_blank rel=noopener><svg style="height:1em" class="inline-block" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path fill="none" stroke="currentcolor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" d="M13.19 8.688a4.5 4.5.0 011.242 7.244l-4.5 4.5a4.5 4.5.0 01-6.364-6.364l1.757-1.757m13.35-.622 1.757-1.757a4.5 4.5.0 00-6.364-6.364l-4.5 4.5a4.5 4.5.0 001.242 7.244"/></svg>
15
+ Demo (3D Web Viewer)</a>
16
+ <a class="hb-attachment-link hb-attachment-small" href="https://www.dropbox.com/scl/fi/in79kjuyn2h8b2mmd847x/NVS_Structural_Color_Objects.pdf?rlkey=sdv7lxi3rymelltdv8u7sgl1d&amp;st=25ixlxzf&amp;dl=0" target=_blank rel=noopener><svg style="height:1em" class="inline-block" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path fill="none" stroke="currentcolor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" d="M13.19 8.688a4.5 4.5.0 011.242 7.244l-4.5 4.5a4.5 4.5.0 01-6.364-6.364l1.757-1.757m13.35-.622 1.757-1.757a4.5 4.5.0 00-6.364-6.364l-4.5 4.5a4.5 4.5.0 001.242 7.244"/></svg>
17
+ PDF (HQ)</a></div></div><div class="pub-list-item view-citation" style=margin-bottom:1rem><i class="far fa-file-alt pub-icon" aria-hidden=true></i>
18
+ <span class="article-metadata li-cite-author"><span>D Zingade</span>, <span>S Dhuri</span>, <span class=font-bold>Prakash Naikade</span>, <span>N Gade</span>, <span>A Teke</span>
19
+ </span>(2015).
20
+ <a href=/publications/dna_based_cryptography/ class=underline>Secure Data Storage on Multi-Cloud Using DNA Based Cryptography</a>.
21
+ IJAERD.<div class="flex space-x-3"><a class="hb-attachment-link hb-attachment-small" href=https://github.com/prakashknaikade/Bachelor-Thesis/blob/main/2.%20Paper-Secure%20Data%20Storage%20On%20Multi-cloud%20Using%20DNA%20Based%20Cryptography.pdf target=_blank rel=noopener><svg style="height:1em" class="inline-block" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path fill="none" stroke="currentcolor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" d="M19.5 14.25v-2.625A3.375 3.375.0 0016.125 8.25h-1.5A1.125 1.125.0 0113.5 7.125v-1.5A3.375 3.375.0 0010.125 2.25H8.25m0 12.75h7.5m-7.5 3H12M10.5 2.25H5.625c-.621.0-1.125.504-1.125 1.125v17.25c0 .621.504 1.125 1.125 1.125h12.75c.621.0 1.125-.504 1.125-1.125V11.25a9 9 0 00-9-9"/></svg>
22
+ PDF
23
+ </a><a class="hb-attachment-link hb-attachment-small" href=/publications/dna_based_cryptography/cite.bib target=_blank data-filename=/publications/dna_based_cryptography/cite.bib><svg style="height:1em" class="inline-block" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path fill="none" stroke="currentcolor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" d="M15.75 17.25v3.375c0 .621-.504 1.125-1.125 1.125h-9.75A1.125 1.125.0 013.75 20.625V7.875c0-.621.504-1.125 1.125-1.125H6.75a9.06 9.06.0 011.5.124m7.5 10.376h3.375c.621.0 1.125-.504 1.125-1.125V11.25c0-4.46-3.243-8.161-7.5-8.876a9.06 9.06.0 00-1.5-.124H9.375c-.621.0-1.125.504-1.125 1.125v3.5m7.5 10.375H9.375A1.125 1.125.0 018.25 16.125v-9.25m12 6.625v-1.875A3.375 3.375.0 0016.875 8.25h-1.5A1.125 1.125.0 0114.25 7.125v-1.5A3.375 3.375.0 0010.875 2.25H9.75"/></svg>
24
+ Cite</a></div></div></div></div></div></section><section id=ama class="relative hbb-section blox-markdown" style="padding:2rem 0"><div class=home-section-bg></div><div class="flex flex-col items-center max-w-prose mx-auto gap-3 justify-center"><div class="mb-6 text-3xl font-bold text-gray-900 dark:text-white">πŸ’¬ Ask Me Anything</div><div class="prose prose-slate lg:prose-xl dark:prose-invert max-w-prose">Click on the πŸ‘‰
25
+ to ask questions about me.</div></div></section><section id=news class="relative hbb-section blox-collection" style="padding:48 114 101 109"><div class=home-section-bg></div><div class="flex flex-col items-center max-w-prose mx-auto gap-3 justify-center"><div class="mb-6 text-3xl font-bold text-gray-900 dark:text-white">πŸ“° Recent News</div></div><div class="flex flex-col items-center"><div class="mt-16 sm:mt-20 w-fit"><div class="flex max-w-3xl flex-col space-y-16"><article class="md:grid md:grid-cols-4 md:items-baseline"><div class="md:col-span-3 group relative flex flex-col items-start"><h2 class="text-base font-semibold tracking-tight text-zinc-800 dark:text-zinc-100"><div class="absolute -inset-x-4 -inset-y-6 z-0 scale-95 bg-zinc-50 opacity-0 transition group-hover:scale-100 group-hover:opacity-100 dark:bg-zinc-800/50 sm:-inset-x-6 sm:rounded-2xl"></div><a href=/post/job/><span class="absolute -inset-x-4 -inset-y-6 z-20 sm:-inset-x-6 sm:rounded-2xl"></span><span class="relative z-10">🧠 Open to work</span></a></h2><time class="md:hidden relative z-10 order-first mb-3 flex items-center text-sm text-zinc-400 dark:text-zinc-500 pl-1" datetime=2024-11-01>Nov 1, 2024</time><p class="relative z-10 mt-2 text-sm text-zinc-600 dark:text-zinc-400">Looking for Computer Vision and Machine Learning Research Engineer Roles</p><div aria-hidden=true class="relative z-10 mt-4 flex items-center text-sm font-medium text-primary-500">Read more<svg aria-hidden="true" class="ml-1 h-4 w-4 stroke-current" fill="none" viewBox="0 0 16 16"><path d="M6.75 5.75 9.25 8l-2.5 2.25" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5"/></svg></div></div><time class="mt-1 hidden md:block relative z-10 order-first mb-3 flex items-center text-sm text-zinc-400 dark:text-zinc-500" datetime=2024-11-01>Nov 1, 2024</time></article></div></div></div></section></div><div class=page-footer><footer class="container mx-auto flex flex-col justify-items-center text-sm leading-6 mt-24 mb-4 text-slate-700 dark:text-slate-200"><p class="powered-by text-center">Β© 2024 Prakash. This work is licensed under <a href=https://creativecommons.org/licenses/by-nc-nd/4.0 rel="noopener noreferrer" target=_blank>CC BY NC ND 4.0</a></p><p class="powered-by footer-license-icons"><a href=https://creativecommons.org/licenses/by-nc-nd/4.0 rel="noopener noreferrer" target=_blank aria-label="Creative Commons"><i class="fab fa-creative-commons fa-2x" aria-hidden=true></i>
26
+ <i class="fab fa-creative-commons-by fa-2x" aria-hidden=true></i>
27
+ <i class="fab fa-creative-commons-nc fa-2x" aria-hidden=true></i>
28
+ <i class="fab fa-creative-commons-nd fa-2x" aria-hidden=true></i></a></p><p class="powered-by text-center">Published with <a href="https://hugoblox.com/?utm_campaign=poweredby" target=_blank rel=noopener>Hugo Blox Builder</a> β€” the free, <a href=https://github.com/HugoBlox/hugo-blox-builder target=_blank rel=noopener>open source</a> website builder that empowers creators.</p></footer></div></body></html>
websites.urls ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ https://www.linkedin.com/in/prakashknaikade/
2
+ https://prakashknaikade.github.io/
3
+ https://prakashknaikade.github.io/project/ludwig-palette/
4
+ https://prakashknaikade.github.io/project/diffusion-models/
5
+ https://prakashknaikade.github.io/publications/nvs_structural_color_object/
6
+ https://prakashknaikade.github.io/project/mini-ray-tracer/
7
+ https://prakashknaikade.github.io/project/
8
+ https://prakashknaikade.github.io/publication_types/
9
+ https://prakashknaikade.github.io/project/easy-flappy-bird/
10
+ https://prakashknaikade.github.io/event/
11
+ https://prakashknaikade.github.io/experience/
12
+ https://prakashknaikade.github.io/project/llms/
13
+ https://prakashknaikade.github.io/project/har/
14
+ https://prakashknaikade.github.io/event/example/
15
+ https://prakashknaikade.github.io/publications/dna_based_cryptography/
16
+ https://prakashknaikade.github.io/project/chatbot/
17
+ https://prakashknaikade.github.io/teaching/