Spaces:
Runtime error
Runtime error
Update core_agent.py
Browse files- core_agent.py +140 -0
core_agent.py
CHANGED
|
@@ -49,3 +49,143 @@ class GAIAAgent:
|
|
| 49 |
provider: Provider for InferenceClientModel (e.g., "hf-inference")
|
| 50 |
timeout: Timeout in seconds for API calls
|
| 51 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
provider: Provider for InferenceClientModel (e.g., "hf-inference")
|
| 50 |
timeout: Timeout in seconds for API calls
|
| 51 |
"""
|
| 52 |
+
# Set verbosity
|
| 53 |
+
self.verbose = verbose
|
| 54 |
+
self.system_prompt = system_prompt # Store for potential future use
|
| 55 |
+
|
| 56 |
+
# Initialize model based on configuration
|
| 57 |
+
if model_type == "HfApiModel":
|
| 58 |
+
if api_key is None:
|
| 59 |
+
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 60 |
+
if not api_key:
|
| 61 |
+
raise ValueError("No Hugging Face token provided. Please set HUGGINGFACEHUB_API_TOKEN environment variable or pass api_key parameter.")
|
| 62 |
+
|
| 63 |
+
if self.verbose:
|
| 64 |
+
print(f"Using Hugging Face token: {api_key[:5]}...")
|
| 65 |
+
|
| 66 |
+
self.model = HfApiModel(
|
| 67 |
+
model_id=model_id or "meta-llama/Llama-3-70B-Instruct",
|
| 68 |
+
token=api_key,
|
| 69 |
+
temperature=temperature
|
| 70 |
+
)
|
| 71 |
+
elif model_type == "InferenceClientModel":
|
| 72 |
+
if api_key is None:
|
| 73 |
+
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 74 |
+
if not api_key:
|
| 75 |
+
raise ValueError("No Hugging Face token provided. Please set HUGGINGFACEHUB_API_TOKEN environment variable or pass api_key parameter.")
|
| 76 |
+
|
| 77 |
+
if self.verbose:
|
| 78 |
+
print(f"Using Hugging Face token: {api_key[:5]}...")
|
| 79 |
+
|
| 80 |
+
self.model = InferenceClientModel(
|
| 81 |
+
model_id=model_id or "meta-llama/Llama-3-70B-Instruct",
|
| 82 |
+
provider=provider or "hf-inference",
|
| 83 |
+
token=api_key,
|
| 84 |
+
timeout=timeout or 120,
|
| 85 |
+
temperature=temperature
|
| 86 |
+
)
|
| 87 |
+
elif model_type == "LiteLLMModel":
|
| 88 |
+
from smolagents import LiteLLMModel
|
| 89 |
+
self.model = LiteLLMModel(
|
| 90 |
+
model_id=model_id or "gpt-4o",
|
| 91 |
+
api_key=api_key or os.getenv("OPENAI_API_KEY"),
|
| 92 |
+
temperature=temperature
|
| 93 |
+
)
|
| 94 |
+
elif model_type == "OpenAIServerModel":
|
| 95 |
+
# Check for xAI API key and base URL first
|
| 96 |
+
xai_api_key = os.getenv("XAI_API_KEY")
|
| 97 |
+
xai_api_base = os.getenv("XAI_API_BASE")
|
| 98 |
+
|
| 99 |
+
# If xAI credentials are available, use them
|
| 100 |
+
if xai_api_key and api_key is None:
|
| 101 |
+
api_key = xai_api_key
|
| 102 |
+
if self.verbose:
|
| 103 |
+
print(f"Using xAI API key: {api_key[:5]}...")
|
| 104 |
+
|
| 105 |
+
# If no API key specified, fall back to OPENAI_API_KEY
|
| 106 |
+
if api_key is None:
|
| 107 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
| 108 |
+
if not api_key:
|
| 109 |
+
raise ValueError("No OpenAI API key provided. Please set OPENAI_API_KEY or XAI_API_KEY environment variable or pass api_key parameter.")
|
| 110 |
+
|
| 111 |
+
# If xAI API base is available and no api_base is provided, use it
|
| 112 |
+
if xai_api_base and api_base is None:
|
| 113 |
+
api_base = xai_api_base
|
| 114 |
+
if self.verbose:
|
| 115 |
+
print(f"Using xAI API base URL: {api_base}")
|
| 116 |
+
|
| 117 |
+
# If no API base specified but environment variable available, use it
|
| 118 |
+
if api_base is None:
|
| 119 |
+
api_base = os.getenv("AGENT_API_BASE")
|
| 120 |
+
if api_base and self.verbose:
|
| 121 |
+
print(f"Using API base from AGENT_API_BASE: {api_base}")
|
| 122 |
+
|
| 123 |
+
self.model = OpenAIServerModel(
|
| 124 |
+
model_id=model_id or "gpt-4o",
|
| 125 |
+
api_key=api_key,
|
| 126 |
+
api_base=api_base,
|
| 127 |
+
temperature=temperature
|
| 128 |
+
)
|
| 129 |
+
else:
|
| 130 |
+
raise ValueError(f"Unknown model type: {model_type}")
|
| 131 |
+
|
| 132 |
+
if self.verbose:
|
| 133 |
+
print(f"Initialized model: {model_type} - {model_id}")
|
| 134 |
+
|
| 135 |
+
# Initialize default tools
|
| 136 |
+
self.tools = [
|
| 137 |
+
DuckDuckGoSearchTool(),
|
| 138 |
+
PythonInterpreterTool(),
|
| 139 |
+
save_and_read_file,
|
| 140 |
+
download_file_from_url,
|
| 141 |
+
analyze_csv_file,
|
| 142 |
+
analyze_excel_file
|
| 143 |
+
]
|
| 144 |
+
|
| 145 |
+
# Add extract_text_from_image if PIL and pytesseract are available
|
| 146 |
+
try:
|
| 147 |
+
import pytesseract
|
| 148 |
+
from PIL import Image
|
| 149 |
+
self.tools.append(extract_text_from_image)
|
| 150 |
+
if self.verbose:
|
| 151 |
+
print("Added image processing tool")
|
| 152 |
+
except ImportError:
|
| 153 |
+
if self.verbose:
|
| 154 |
+
print("Image processing libraries not available")
|
| 155 |
+
|
| 156 |
+
# Add any additional tools
|
| 157 |
+
if additional_tools:
|
| 158 |
+
self.tools.extend(additional_tools)
|
| 159 |
+
|
| 160 |
+
if self.verbose:
|
| 161 |
+
print(f"Initialized with {len(self.tools)} tools")
|
| 162 |
+
|
| 163 |
+
# Setup imports allowed
|
| 164 |
+
self.imports = ["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", "urllib"]
|
| 165 |
+
if additional_imports:
|
| 166 |
+
self.imports.extend(additional_imports)
|
| 167 |
+
|
| 168 |
+
# Initialize the CodeAgent
|
| 169 |
+
executor_kwargs = {}
|
| 170 |
+
if executor_type == "e2b":
|
| 171 |
+
try:
|
| 172 |
+
# Try to import e2b dependencies to check if they're available
|
| 173 |
+
from e2b_code_interpreter import Sandbox
|
| 174 |
+
if self.verbose:
|
| 175 |
+
print("Using e2b executor")
|
| 176 |
+
except ImportError:
|
| 177 |
+
if self.verbose:
|
| 178 |
+
print("e2b dependencies not found, falling back to local executor")
|
| 179 |
+
executor_type = "local" # Fallback to local if e2b is not available
|
| 180 |
+
|
| 181 |
+
self.agent = CodeAgent(
|
| 182 |
+
tools=self.tools,
|
| 183 |
+
model=self.model,
|
| 184 |
+
additional_authorized_imports=self.imports,
|
| 185 |
+
executor_type=executor_type,
|
| 186 |
+
executor_kwargs=executor_kwargs,
|
| 187 |
+
verbosity_level=2 if self.verbose else 0
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
if self.verbose:
|
| 191 |
+
print("Agent initialized and ready")
|