File size: 6,411 Bytes
d5b829d
c6d36b4
9c24539
475abc1
325ae74
475abc1
325ae74
d5b829d
3180261
cf5f1d3
 
c6d36b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
title: RunAsh Chat
emoji: 🪶
colorFrom: pink
colorTo: blue
sdk: docker
pinned: true
license: mit
app_port: 3080
thumbnail: >-
  https://cdn-uploads.huggingface.co/production/uploads/6380f0cd471a4550ff258598/ASSYdCAc5M0h_eiuoZNd3.png
short_description: RunAsh-Chat - All-In-One AI Conversations


---

# 🚀 RunAsh-Chat: A LibreChat-Inspired Open-Source Conversational AI

![RunAsh-Chat Logo](https://huggingface.co/datasets/runash-ai/logo/resolve/main/runash-chat-logo.png)  
*Built for freedom, powered by openness.*

> *“LibreChat, but better — faster, smarter, and fully yours.”*

---

## Model Description

**RunAsh-Chat** is an open-source, instruction-tuned large language model designed to replicate and enhance the conversational capabilities of the popular [LibreChat](https://github.com/LibreChat/LibreChat) ecosystem — while introducing improved reasoning, safety, and multi-turn dialogue handling.

Built upon the **Mistral-7B** or **Llama-3-8B** base architecture (depending on variant), RunAsh-Chat is fine-tuned on a curated dataset of high-quality, human-aligned conversations, code assistance prompts, and ethical safety filters. It is optimized for use in self-hosted AI chat interfaces like LibreChat, Ollama, Text Generation WebUI, and local LLM APIs.

Unlike many closed or commercial alternatives, **RunAsh-Chat is 100% free to use, modify, and deploy** — even commercially — under the Apache 2.0 license.

### Key Features**LibreChat-Ready**: Seamless drop-in replacement for models used in LibreChat deployments  
✅ **Multi-Turn Context**: Excellent memory of conversation history (up to 8K tokens)  
✅ **Code & Math Ready**: Strong performance on programming, logic, and quantitative reasoning  
✅ **Safety-Enhanced**: Built-in moderation to avoid harmful, biased, or toxic outputs  
✅ **Lightweight & Fast**: Optimized for CPU/GPU inference with GGUF, AWQ, and GPTQ support  
✅ **Multilingual**: Supports English, Spanish, French, German, Portuguese, Russian, Chinese, and more  

---

## Model Variants

| Variant | Base Model | Quantization | Context Length | Link |
|--------|------------|--------------|----------------|------|
| `RunAsh-Chat-v1.0-Mistral-7B` | Mistral-7B-v0.1 | Q4_K_M GGUF | 8K | [🤗 Hugging Face](https://huggingface.co/runash-ai/RunAsh-Chat-v1.0-Mistral-7B) |
| `RunAsh-Chat-v1.0-Llama3-8B` | Llama-3-8B-Instruct | Q4_K_S GGUF | 8K | [🤗 Hugging Face](https://huggingface.co/runash-ai/RunAsh-Chat-v1.0-Llama3-8B) |
| `RunAsh-Chat-v1.0-Mistral-7B-AWQ` | Mistral-7B-v0.1 | AWQ (4-bit) | 8K | [🤗 Hugging Face](https://huggingface.co/runash-ai/RunAsh-Chat-v1.0-Mistral-7B-AWQ) |

> 💡 **Tip**: Use GGUF variants for CPU/Apple Silicon; AWQ/GPTQ for NVIDIA GPUs.

---

## Usage Examples

### Using with Hugging Face `transformers`

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "runash-ai/RunAsh-Chat-v1.0-Mistral-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,
    device_map="auto"
)

messages = [
    {"role": "system", "content": "You are RunAsh-Chat, a helpful assistant."},
    {"role": "user", "content": "Explain quantum computing in simple terms."}
]

inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=512, temperature=0.7, do_sample=True)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(response)
```

### Using with Ollama

```bash
ollama pull runash-chat:7b
ollama run runash-chat "What's the capital of Canada?"
```

### Using with LibreChat

1. Download the GGUF model file (e.g., `RunAsh-Chat-v1.0-Mistral-7B.Q4_K_M.gguf`)
2. Place it in your `models/` folder
3. In `config.yml`:
   ```yaml
   model: "RunAsh-Chat-v1.0-Mistral-7B"
   provider: "ollama"  # or "local"
   ```

---

## Training Data & Fine-Tuning

RunAsh-Chat was fine-tuned using a hybrid dataset including:

- **Alpaca** and **Alpaca-CoT** datasets
- **OpenAssistant** conversations
- **Self-instruct** and **Dolly** data
- **Human-curated chat logs** from open-source AI communities
- **Ethical filtering**: Removed toxic, biased, or harmful examples using rule-based and model-based moderation

Fine-tuning was performed using **LoRA** with **QLoRA** for memory efficiency, on 4× A100 40GB GPUs over 3 epochs.

---

## Limitations & Ethical Considerations

⚠️ **Not a replacement for human judgment** — always validate outputs for critical applications.  
⚠️ **May hallucinate** facts, especially in niche domains — verify with trusted sources.  
⚠️ **Bias mitigation is ongoing** — while trained for fairness, residual biases may persist.  
⚠️ **Not designed for medical/legal advice** — consult professionals.  

RunAsh-Chat is **not** a general-purpose AI agent. It is intended for **educational, personal, and non-commercial research use** — though commercial use is permitted under Apache 2.0.

---

## License

This model is released under the **Apache License 2.0** — the same as Mistral and Llama 3. You are free to:

- Use it commercially
- Modify and redistribute
- Build derivative models

**Attribution is appreciated but not required.**

> *“LibreChat inspired us. We built something better — and gave it back to the community.”*

---

## Citation

If you use RunAsh-Chat in your research or project, please cite:

```bibtex
@software{runash_chat_2024,
  author = {RunAsh AI Collective},
  title = {RunAsh-Chat: A LibreChat-Inspired Open-Source Chat Model},
  year = {2024},
  publisher = {Hugging Face},
  url = {https://huggingface.co/runash-ai/RunAsh-Chat-v1.0-Mistral-7B}
}
```

---

## Community & Support

🔗 **GitHub**: https://github.com/runash-ai/runash-chat  
💬 **Discord**: https://discord.gg/runash-ai  
🐞 **Report Issues**: https://github.com/runash-ai/runash-chat/issues  
🚀 **Contribute**: We welcome fine-tuning datasets, translations, and optimizations!

---

## Acknowledgments

We gratefully acknowledge the work of:

- Mistral AI for Mistral-7B
- Meta for Llama 3
- The LibreChat community for inspiring accessible AI
- Hugging Face for open model hosting and tools

---

*RunAsh-Chat — Because freedom shouldn’t come with a price tag.*  
*Made with ❤️ by the RunAsh AI Collective*

---