SonyaX20
commited on
Commit
·
379faeb
1
Parent(s):
f2ef4f5
new
Browse files- .gitignore +1 -0
- README.md +61 -6
- app.py +91 -0
- requirements.txt +4 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.env
|
README.md
CHANGED
|
@@ -1,13 +1,68 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Slides Comprehension
|
| 3 |
+
emoji: 💬
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.19.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
+
short_description: 课程幻灯片智能讲解系统
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# 课程幻灯片智能讲解系统
|
| 15 |
+
|
| 16 |
+
这是一个基于GPT-4 Vision的课程幻灯片智能讲解系统,可以自动分析幻灯片内容并生成详细的讲解。
|
| 17 |
+
|
| 18 |
+
## 功能特点
|
| 19 |
+
|
| 20 |
+
- 支持上传幻灯片图片
|
| 21 |
+
- 基于GPT-4 Vision的智能分析
|
| 22 |
+
- 生成专业、清晰的讲解内容
|
| 23 |
+
- 简单易用的Web界面
|
| 24 |
+
|
| 25 |
+
## 使用方法
|
| 26 |
+
|
| 27 |
+
1. 上传幻灯片图片
|
| 28 |
+
2. 输入课程标题
|
| 29 |
+
3. 点击提交按钮
|
| 30 |
+
4. 等待系统生成讲解内容
|
| 31 |
+
|
| 32 |
+
## 环境要求
|
| 33 |
+
|
| 34 |
+
- Python 3.8+
|
| 35 |
+
- OpenAI API密钥
|
| 36 |
+
- 相关Python包(见requirements.txt)
|
| 37 |
+
|
| 38 |
+
## 配置说明
|
| 39 |
+
|
| 40 |
+
在使用之前,请确保:
|
| 41 |
+
|
| 42 |
+
1. 在Hugging Face Space的Secrets中设置了OPENAI_API_KEY
|
| 43 |
+
2. 安装了所有必要的依赖包
|
| 44 |
+
|
| 45 |
+
## 部署说明
|
| 46 |
+
|
| 47 |
+
1. Fork 这个项目到你的 Hugging Face Space
|
| 48 |
+
2. 在 Space 设置中:
|
| 49 |
+
- Hardware: 选择 CPU (免费) 或 GPU (付费)
|
| 50 |
+
- Python packages: 确保所有依赖都已列在 requirements.txt 中
|
| 51 |
+
3. 添加 Repository Secrets:
|
| 52 |
+
- 名称:`OPENAI_API_KEY`
|
| 53 |
+
- 值:你的 OpenAI API Key
|
| 54 |
+
4. 等待自动部署完成
|
| 55 |
+
|
| 56 |
+
## License
|
| 57 |
+
|
| 58 |
+
MIT License
|
| 59 |
+
|
| 60 |
+
## Hugging Face Spaces 部署说明
|
| 61 |
+
|
| 62 |
+
1. Fork 这个项目到你的 Hugging Face Space
|
| 63 |
+
2. 在 Space 设置中:
|
| 64 |
+
- Hardware: 选择 CPU (免费) 或 GPU (付费)
|
| 65 |
+
- Python packages: 确保所有依赖都已列在 requirements.txt 中
|
| 66 |
+
3. 添加 Repository Secrets:
|
| 67 |
+
- 名称:`OPENAI_API_KEY`
|
| 68 |
+
- 值:你的 OpenAI API Key
|
app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import spaces
|
| 4 |
+
from openai import OpenAI
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import torch
|
| 7 |
+
import base64
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
|
| 10 |
+
# 初始化GPU
|
| 11 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 12 |
+
zero = torch.Tensor([0]).to(device)
|
| 13 |
+
print(f"Using device: {zero.device}")
|
| 14 |
+
|
| 15 |
+
# 初始化OpenAI客户端
|
| 16 |
+
client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
|
| 17 |
+
|
| 18 |
+
def encode_image_to_base64(image):
|
| 19 |
+
"""将图片转换为base64编码"""
|
| 20 |
+
if isinstance(image, str): # 如果是文件路径
|
| 21 |
+
with Image.open(image) as img:
|
| 22 |
+
buffered = BytesIO()
|
| 23 |
+
img.save(buffered, format="PNG")
|
| 24 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 25 |
+
else: # 如果是PIL Image对象
|
| 26 |
+
buffered = BytesIO()
|
| 27 |
+
image.save(buffered, format="PNG")
|
| 28 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 29 |
+
return img_str
|
| 30 |
+
|
| 31 |
+
@spaces.GPU
|
| 32 |
+
def analyze_slide(image, course_title):
|
| 33 |
+
"""分析幻灯片内容并生成讲解"""
|
| 34 |
+
print(f"Current device: {zero.device}") # 验证GPU使用情况
|
| 35 |
+
|
| 36 |
+
if not image:
|
| 37 |
+
return "请上传幻灯片图片"
|
| 38 |
+
|
| 39 |
+
# 将图片转换为base64
|
| 40 |
+
base64_image = encode_image_to_base64(image)
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
# 调用GPT-4 Vision API
|
| 44 |
+
response = client.chat.completions.create(
|
| 45 |
+
model="gpt-4-vision-preview",
|
| 46 |
+
messages=[
|
| 47 |
+
{
|
| 48 |
+
"role": "system",
|
| 49 |
+
"content": "你是一位专业的教育讲师,请基于上传的课程幻灯片图片内容,生成详细的讲解。讲解应该清晰、专业且易于理解。"
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"role": "user",
|
| 53 |
+
"content": [
|
| 54 |
+
{
|
| 55 |
+
"type": "text",
|
| 56 |
+
"text": f"这是一节'{course_title}'课程的幻灯片。请详细讲解这张幻灯片的内容,包括主要概念、重点和难点。"
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"type": "image_url",
|
| 60 |
+
"image_url": {
|
| 61 |
+
"url": f"data:image/png;base64,{base64_image}"
|
| 62 |
+
}
|
| 63 |
+
}
|
| 64 |
+
]
|
| 65 |
+
}
|
| 66 |
+
],
|
| 67 |
+
max_tokens=2000
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
return response.choices[0].message.content
|
| 71 |
+
|
| 72 |
+
except Exception as e:
|
| 73 |
+
return f"处理过程中出现错误: {str(e)}"
|
| 74 |
+
|
| 75 |
+
# 创建Gradio界面
|
| 76 |
+
demo = gr.Interface(
|
| 77 |
+
fn=analyze_slide,
|
| 78 |
+
inputs=[
|
| 79 |
+
gr.Image(type="pil", label="上传幻灯片图片"),
|
| 80 |
+
gr.Textbox(label="课程标题", placeholder="请输入课程标题")
|
| 81 |
+
],
|
| 82 |
+
outputs=gr.Textbox(label="讲解内容"),
|
| 83 |
+
title="课程幻灯片智能讲解系统",
|
| 84 |
+
description="上传课程幻灯片图片并输入课程标题,系统将生成详细的讲解内容。",
|
| 85 |
+
examples=[],
|
| 86 |
+
cache_examples=False
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# 启动应用
|
| 90 |
+
if __name__ == "__main__":
|
| 91 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.19.2
|
| 2 |
+
openai==1.12.0
|
| 3 |
+
Pillow==10.2.0
|
| 4 |
+
torch>=2.0.0
|