Update app.py
Browse files
app.py
CHANGED
|
@@ -1,39 +1,29 @@
|
|
| 1 |
-
# app.py - FINAL
|
| 2 |
-
# This script explicitly downloads the model files from the Hub before loading them.
|
| 3 |
-
# This removes all guesswork about file paths.
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import joblib
|
| 7 |
import pandas as pd
|
| 8 |
import os
|
| 9 |
-
import subprocess
|
| 10 |
|
| 11 |
-
# --- STEP 1: Download the Model Files from the Hub ---
|
| 12 |
-
# This happens only ONCE when the Space boots up.
|
| 13 |
-
|
| 14 |
-
# The direct download URLs for your files on the Hub
|
| 15 |
MODEL_URL = "https://huggingface.co/szili2011/ai-house-price-predictor/resolve/main/housing_model.joblib"
|
| 16 |
COLUMNS_URL = "https://huggingface.co/szili2011/ai-house-price-predictor/resolve/main/model_columns.joblib"
|
| 17 |
-
|
| 18 |
-
# The names we will save the files as locally in our Space
|
| 19 |
MODEL_LOCAL_PATH = "housing_model.joblib"
|
| 20 |
COLUMNS_LOCAL_PATH = "model_columns.joblib"
|
| 21 |
|
| 22 |
-
|
| 23 |
-
print("--- Downloading Model Files ---")
|
| 24 |
-
subprocess.run(["wget", "-O", MODEL_LOCAL_PATH, MODEL_URL])
|
| 25 |
-
subprocess.run(["wget", "-O", COLUMNS_LOCAL_PATH, COLUMNS_URL])
|
| 26 |
-
print("--- Download Complete ---")
|
| 27 |
-
|
| 28 |
|
| 29 |
-
# --- STEP 2: Load the Now-Local Model and Columns ---
|
| 30 |
try:
|
| 31 |
print(f"Loading model from local path: '{MODEL_LOCAL_PATH}'")
|
| 32 |
model = joblib.load(MODEL_LOCAL_PATH)
|
| 33 |
-
|
| 34 |
print(f"Loading columns from local path: '{COLUMNS_LOCAL_PATH}'")
|
| 35 |
model_columns = joblib.load(COLUMNS_LOCAL_PATH)
|
| 36 |
-
|
| 37 |
print("✅ Model and columns loaded successfully.")
|
| 38 |
model_loaded_successfully = True
|
| 39 |
except Exception as e:
|
|
@@ -41,11 +31,26 @@ except Exception as e:
|
|
| 41 |
model_loaded_successfully = False
|
| 42 |
|
| 43 |
|
| 44 |
-
# ---
|
| 45 |
def predict_price(sqft, bedrooms, house_age, condition, year_sold, interest_rate, region, sub_type, style, has_garage, has_pool):
|
| 46 |
if not model_loaded_successfully:
|
| 47 |
-
raise gr.Error("Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
|
|
|
| 49 |
input_data = {
|
| 50 |
'SquareFootage': sqft, 'Bedrooms': bedrooms, 'HouseAge': house_age,
|
| 51 |
'PropertyCondition': condition, 'HasGarage': has_garage, 'HasPool': has_pool,
|
|
@@ -61,16 +66,17 @@ def predict_price(sqft, bedrooms, house_age, condition, year_sold, interest_rate
|
|
| 61 |
|
| 62 |
return f"${predicted_price:,.0f}"
|
| 63 |
|
| 64 |
-
# --- Create the Gradio Interface ---
|
| 65 |
demo = gr.Interface(
|
| 66 |
fn=predict_price,
|
| 67 |
inputs=[
|
| 68 |
-
|
| 69 |
-
gr.Number(label="
|
| 70 |
-
gr.Number(label="
|
|
|
|
| 71 |
gr.Slider(label="Property Condition", minimum=1, maximum=10, step=1, value=8),
|
| 72 |
-
gr.Number(label="Year Sold", value=2024),
|
| 73 |
-
gr.Number(label="Interest Rate (%)", value=5.5),
|
| 74 |
gr.Radio(['Sunbelt', 'Pacific Northwest', 'Rust Belt', 'New England', 'Mountain West'], label="Region", value="Sunbelt"),
|
| 75 |
gr.Radio(['Urban', 'Suburban', 'Rural', 'Historic District'], label="Sub-Type", value="Suburban"),
|
| 76 |
gr.Radio(['Modern', 'Ranch', 'Colonial', 'Craftsman', 'Victorian'], label="Architectural Style", value="Colonial"),
|
|
|
|
| 1 |
+
# app.py - FINAL PROFESSIONAL version with input validation and guardrails
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import joblib
|
| 5 |
import pandas as pd
|
| 6 |
import os
|
| 7 |
+
import subprocess
|
| 8 |
|
| 9 |
+
# --- STEP 1: Download the Model Files from the Hub (same as before) ---
|
|
|
|
|
|
|
|
|
|
| 10 |
MODEL_URL = "https://huggingface.co/szili2011/ai-house-price-predictor/resolve/main/housing_model.joblib"
|
| 11 |
COLUMNS_URL = "https://huggingface.co/szili2011/ai-house-price-predictor/resolve/main/model_columns.joblib"
|
|
|
|
|
|
|
| 12 |
MODEL_LOCAL_PATH = "housing_model.joblib"
|
| 13 |
COLUMNS_LOCAL_PATH = "model_columns.joblib"
|
| 14 |
|
| 15 |
+
if not os.path.exists(MODEL_LOCAL_PATH):
|
| 16 |
+
print("--- Downloading Model Files ---")
|
| 17 |
+
subprocess.run(["wget", "-O", MODEL_LOCAL_PATH, MODEL_URL])
|
| 18 |
+
subprocess.run(["wget", "-O", COLUMNS_LOCAL_PATH, COLUMNS_URL])
|
| 19 |
+
print("--- Download Complete ---")
|
|
|
|
| 20 |
|
| 21 |
+
# --- STEP 2: Load the Now-Local Model and Columns (same as before) ---
|
| 22 |
try:
|
| 23 |
print(f"Loading model from local path: '{MODEL_LOCAL_PATH}'")
|
| 24 |
model = joblib.load(MODEL_LOCAL_PATH)
|
|
|
|
| 25 |
print(f"Loading columns from local path: '{COLUMNS_LOCAL_PATH}'")
|
| 26 |
model_columns = joblib.load(COLUMNS_LOCAL_PATH)
|
|
|
|
| 27 |
print("✅ Model and columns loaded successfully.")
|
| 28 |
model_loaded_successfully = True
|
| 29 |
except Exception as e:
|
|
|
|
| 31 |
model_loaded_successfully = False
|
| 32 |
|
| 33 |
|
| 34 |
+
# --- This is the core prediction function with the new validation logic ---
|
| 35 |
def predict_price(sqft, bedrooms, house_age, condition, year_sold, interest_rate, region, sub_type, style, has_garage, has_pool):
|
| 36 |
if not model_loaded_successfully:
|
| 37 |
+
raise gr.Error("Model is not loaded. Please check the Space logs for errors.")
|
| 38 |
+
|
| 39 |
+
# --- NEW: Input Validation Guardrails ---
|
| 40 |
+
# Before we do anything, we check if the user's inputs are reasonable.
|
| 41 |
+
# If not, we stop and send back a helpful error message.
|
| 42 |
+
if not (300 <= sqft <= 30000):
|
| 43 |
+
raise gr.Error(f"Input Error: Square Footage must be between 300 and 30,000. You entered {sqft}.")
|
| 44 |
+
if not (1 <= bedrooms <= 20):
|
| 45 |
+
raise gr.Error(f"Input Error: Number of Bedrooms must be between 1 and 20. You entered {bedrooms}.")
|
| 46 |
+
if not (0 <= house_age <= 200):
|
| 47 |
+
raise gr.Error(f"Input Error: House Age must be between 0 and 200. You entered {house_age}.")
|
| 48 |
+
if not (2000 <= year_sold <= 2030):
|
| 49 |
+
raise gr.Error(f"Input Error: Year Sold must be between 2000 and 2030. You entered {year_sold}.")
|
| 50 |
+
if not (0 <= interest_rate <= 25):
|
| 51 |
+
raise gr.Error(f"Input Error: Interest Rate must be between 0 and 25. You entered {interest_rate}.")
|
| 52 |
|
| 53 |
+
# If all checks pass, we proceed with the prediction.
|
| 54 |
input_data = {
|
| 55 |
'SquareFootage': sqft, 'Bedrooms': bedrooms, 'HouseAge': house_age,
|
| 56 |
'PropertyCondition': condition, 'HasGarage': has_garage, 'HasPool': has_pool,
|
|
|
|
| 66 |
|
| 67 |
return f"${predicted_price:,.0f}"
|
| 68 |
|
| 69 |
+
# --- Create the Gradio Interface with better UI limits ---
|
| 70 |
demo = gr.Interface(
|
| 71 |
fn=predict_price,
|
| 72 |
inputs=[
|
| 73 |
+
# --- NEW: Added minimum and maximum values to the UI components ---
|
| 74 |
+
gr.Number(label="Square Footage", value=2500, minimum=300, maximum=30000),
|
| 75 |
+
gr.Number(label="Bedrooms", value=4, minimum=1, maximum=20),
|
| 76 |
+
gr.Number(label="House Age (years)", value=15, minimum=0, maximum=200),
|
| 77 |
gr.Slider(label="Property Condition", minimum=1, maximum=10, step=1, value=8),
|
| 78 |
+
gr.Number(label="Year Sold", value=2024, minimum=2000, maximum=2030),
|
| 79 |
+
gr.Number(label="Interest Rate (%)", value=5.5, minimum=0, maximum=25),
|
| 80 |
gr.Radio(['Sunbelt', 'Pacific Northwest', 'Rust Belt', 'New England', 'Mountain West'], label="Region", value="Sunbelt"),
|
| 81 |
gr.Radio(['Urban', 'Suburban', 'Rural', 'Historic District'], label="Sub-Type", value="Suburban"),
|
| 82 |
gr.Radio(['Modern', 'Ranch', 'Colonial', 'Craftsman', 'Victorian'], label="Architectural Style", value="Colonial"),
|