Spaces:
Running
Running
| """ | |
| Usage: | |
| wget https://github.com/thewh1teagle/phonikud-chatterbox/releases/download/asset-files-v1/female1.wav -O example1.wav | |
| # Run with default HF model | |
| uv run src/infer.py | |
| # Or run with local checkpoint | |
| uv run src/infer.py --model ./whisper-heb-ipa/checkpoint-600 | |
| # Or with whisper small | |
| uv run src/infer.py --model openai/whisper-small | |
| # Or with thewh1teagle/whisper-heb-ipa | |
| uv run src/infer.py --model thewh1teagle/whisper-heb-ipa | |
| """ | |
| import torch | |
| from transformers import pipeline | |
| import gradio as gr | |
| import argparse | |
| from pydub import AudioSegment | |
| from pydub.effects import normalize | |
| import tempfile | |
| import os | |
| def main(): | |
| parser = argparse.ArgumentParser(description="Whisper Transcription Demo") | |
| parser.add_argument( | |
| "--model", | |
| type=str, | |
| default="openai/whisper-small", | |
| help="Model name or path for Whisper (default: openai/whisper-small)" | |
| ) | |
| args = parser.parse_args() | |
| MODEL_NAME = args.model | |
| BATCH_SIZE = 8 | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| pipe = pipeline( | |
| task="automatic-speech-recognition", | |
| model=MODEL_NAME, | |
| chunk_length_s=30, | |
| device=device, | |
| ) | |
| def normalize_audio(file_path): | |
| """Normalize audio using pydub to improve transcription quality.""" | |
| try: | |
| # Load audio file | |
| audio = AudioSegment.from_file(file_path) | |
| # Normalize the audio (adjusts volume to optimal level) | |
| normalized_audio = normalize(audio) | |
| # Create a temporary file for the normalized audio | |
| with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file: | |
| normalized_audio.export(temp_file.name, format="wav") | |
| return temp_file.name | |
| except Exception as e: | |
| print(f"Warning: Audio normalization failed: {e}") | |
| # Return original file if normalization fails | |
| return file_path | |
| def transcribe(file, task): | |
| # Normalize the audio before transcription | |
| normalized_file = normalize_audio(file) | |
| try: | |
| outputs = pipe(normalized_file, batch_size=BATCH_SIZE, generate_kwargs={"task": task}) | |
| text = outputs["text"] | |
| return text | |
| finally: | |
| # Clean up temporary normalized file if it was created | |
| if normalized_file != file and os.path.exists(normalized_file): | |
| try: | |
| os.unlink(normalized_file) | |
| except Exception as e: | |
| print(f"Warning: Could not delete temporary file {normalized_file}: {e}") | |
| demo = gr.Blocks( | |
| css=""" | |
| .large-textbox textarea { | |
| font-size: 20px !important; | |
| line-height: 1.6 !important; | |
| } | |
| """ | |
| ) | |
| mic_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.Audio(sources=["microphone", "upload"], type="filepath"), | |
| gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
| ], | |
| outputs=gr.Textbox( | |
| label="Transcription", | |
| lines=6, | |
| max_lines=15, | |
| min_width=400, | |
| show_copy_button=True, | |
| placeholder="Transcribed text will appear here...", | |
| elem_classes=["large-textbox"] | |
| ), | |
| theme="huggingface", | |
| title="Whisper Demo: Transcribe Audio", | |
| description=( | |
| "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
| f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files" | |
| " of arbitrary length." | |
| ), | |
| allow_flagging="never", | |
| ) | |
| file_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.Audio(sources=["upload"], label="Audio file", type="filepath"), | |
| gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
| ], | |
| outputs=gr.Textbox( | |
| label="Transcription", | |
| lines=6, | |
| max_lines=15, | |
| min_width=400, | |
| show_copy_button=True, | |
| placeholder="Transcribed text will appear here...", | |
| elem_classes=["large-textbox"] | |
| ), | |
| theme="huggingface", | |
| title="Whisper Demo: Transcribe Audio", | |
| description=( | |
| "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
| f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files" | |
| " of arbitrary length." | |
| ), | |
| examples=[ | |
| ["./example1.wav", "transcribe"], | |
| ], | |
| cache_examples=True, | |
| allow_flagging="never", | |
| ) | |
| with demo: | |
| gr.TabbedInterface([file_transcribe, mic_transcribe], ["Transcribe Audio File", "Transcribe Microphone"]) | |
| demo.launch(server_name="0.0.0.0", server_port=7860) | |
| if __name__ == "__main__": | |
| main() |