Spaces:
Runtime error
Runtime error
feat: vmap optimizer (#166)
Browse files- src/dalle_mini/model/modeling.py +35 -23
- src/dalle_mini/model/partitions.py +1 -1
- tools/train/config/mega/config.json +2 -2
- tools/train/train.py +118 -89
src/dalle_mini/model/modeling.py
CHANGED
|
@@ -946,15 +946,6 @@ class FlaxBartEncoderLayerCollection(nn.Module):
|
|
| 946 |
if output_hidden_states:
|
| 947 |
all_hidden_states += (hidden_states,)
|
| 948 |
|
| 949 |
-
# postln is already applied in every layer
|
| 950 |
-
if self.config.use_final_ln_encoder and self.config.ln_positions != "postln":
|
| 951 |
-
hidden_states = norm(
|
| 952 |
-
self.config.ln_type,
|
| 953 |
-
dtype=self.dtype,
|
| 954 |
-
epsilon=1e-05,
|
| 955 |
-
use_scale=self.config.force_ln_scale,
|
| 956 |
-
)(hidden_states)
|
| 957 |
-
|
| 958 |
outputs = [
|
| 959 |
hidden_states,
|
| 960 |
all_hidden_states,
|
|
@@ -1034,7 +1025,7 @@ class FlaxBartDecoderLayerCollection(nn.Module):
|
|
| 1034 |
self.config,
|
| 1035 |
dtype=self.dtype,
|
| 1036 |
add_norm=self.config.ln_positions == "postln",
|
| 1037 |
-
name="
|
| 1038 |
)(
|
| 1039 |
hidden_states,
|
| 1040 |
attention_mask,
|
|
@@ -1086,15 +1077,6 @@ class FlaxBartDecoderLayerCollection(nn.Module):
|
|
| 1086 |
if output_hidden_states:
|
| 1087 |
all_hidden_states += (hidden_states,)
|
| 1088 |
|
| 1089 |
-
# postln is already applied in every layer
|
| 1090 |
-
if self.config.use_final_ln_decoder and self.config.ln_positions != "postln":
|
| 1091 |
-
hidden_states = norm(
|
| 1092 |
-
self.config.ln_type,
|
| 1093 |
-
dtype=self.dtype,
|
| 1094 |
-
epsilon=1e-05,
|
| 1095 |
-
use_scale=self.config.force_ln_scale,
|
| 1096 |
-
)(hidden_states)
|
| 1097 |
-
|
| 1098 |
outputs = [
|
| 1099 |
hidden_states,
|
| 1100 |
all_hidden_states,
|
|
@@ -1146,6 +1128,17 @@ class FlaxBartEncoder(nn.Module):
|
|
| 1146 |
self.config.ln_type, dtype=self.dtype, epsilon=1e-05
|
| 1147 |
)
|
| 1148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1149 |
def __call__(
|
| 1150 |
self,
|
| 1151 |
input_ids,
|
|
@@ -1177,11 +1170,16 @@ class FlaxBartEncoder(nn.Module):
|
|
| 1177 |
return_dict=return_dict,
|
| 1178 |
)
|
| 1179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1180 |
if not return_dict:
|
| 1181 |
-
return outputs
|
| 1182 |
|
| 1183 |
return FlaxBaseModelOutput(
|
| 1184 |
-
last_hidden_state=
|
| 1185 |
hidden_states=outputs.hidden_states,
|
| 1186 |
attentions=outputs.attentions,
|
| 1187 |
)
|
|
@@ -1223,6 +1221,15 @@ class FlaxBartDecoder(nn.Module):
|
|
| 1223 |
self.config.ln_type, dtype=self.dtype, epsilon=1e-05
|
| 1224 |
)
|
| 1225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1226 |
def __call__(
|
| 1227 |
self,
|
| 1228 |
input_ids,
|
|
@@ -1260,11 +1267,16 @@ class FlaxBartDecoder(nn.Module):
|
|
| 1260 |
return_dict=return_dict,
|
| 1261 |
)
|
| 1262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1263 |
if not return_dict:
|
| 1264 |
-
return outputs
|
| 1265 |
|
| 1266 |
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
| 1267 |
-
last_hidden_state=
|
| 1268 |
hidden_states=outputs.hidden_states,
|
| 1269 |
attentions=outputs.attentions,
|
| 1270 |
cross_attentions=outputs.cross_attentions,
|
|
|
|
| 946 |
if output_hidden_states:
|
| 947 |
all_hidden_states += (hidden_states,)
|
| 948 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 949 |
outputs = [
|
| 950 |
hidden_states,
|
| 951 |
all_hidden_states,
|
|
|
|
| 1025 |
self.config,
|
| 1026 |
dtype=self.dtype,
|
| 1027 |
add_norm=self.config.ln_positions == "postln",
|
| 1028 |
+
name="FlaxBartDecoderLayers",
|
| 1029 |
)(
|
| 1030 |
hidden_states,
|
| 1031 |
attention_mask,
|
|
|
|
| 1077 |
if output_hidden_states:
|
| 1078 |
all_hidden_states += (hidden_states,)
|
| 1079 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1080 |
outputs = [
|
| 1081 |
hidden_states,
|
| 1082 |
all_hidden_states,
|
|
|
|
| 1128 |
self.config.ln_type, dtype=self.dtype, epsilon=1e-05
|
| 1129 |
)
|
| 1130 |
|
| 1131 |
+
# postln is already applied in every layer
|
| 1132 |
+
if self.config.use_final_ln_encoder and self.config.ln_positions != "postln":
|
| 1133 |
+
self.final_ln = norm(
|
| 1134 |
+
self.config.ln_type,
|
| 1135 |
+
dtype=self.dtype,
|
| 1136 |
+
epsilon=1e-05,
|
| 1137 |
+
use_scale=self.config.force_ln_scale,
|
| 1138 |
+
)
|
| 1139 |
+
else:
|
| 1140 |
+
self.final_ln = None
|
| 1141 |
+
|
| 1142 |
def __call__(
|
| 1143 |
self,
|
| 1144 |
input_ids,
|
|
|
|
| 1170 |
return_dict=return_dict,
|
| 1171 |
)
|
| 1172 |
|
| 1173 |
+
if self.final_ln is None:
|
| 1174 |
+
final_output = outputs[0]
|
| 1175 |
+
else:
|
| 1176 |
+
final_output = self.final_ln(outputs[0])
|
| 1177 |
+
|
| 1178 |
if not return_dict:
|
| 1179 |
+
return (final_output,) + outputs[1:]
|
| 1180 |
|
| 1181 |
return FlaxBaseModelOutput(
|
| 1182 |
+
last_hidden_state=final_output,
|
| 1183 |
hidden_states=outputs.hidden_states,
|
| 1184 |
attentions=outputs.attentions,
|
| 1185 |
)
|
|
|
|
| 1221 |
self.config.ln_type, dtype=self.dtype, epsilon=1e-05
|
| 1222 |
)
|
| 1223 |
|
| 1224 |
+
# postln is already applied in every layer
|
| 1225 |
+
if self.config.use_final_ln_decoder and self.config.ln_positions != "postln":
|
| 1226 |
+
self.final_ln = norm(
|
| 1227 |
+
self.config.ln_type,
|
| 1228 |
+
dtype=self.dtype,
|
| 1229 |
+
epsilon=1e-05,
|
| 1230 |
+
use_scale=self.config.force_ln_scale,
|
| 1231 |
+
)
|
| 1232 |
+
|
| 1233 |
def __call__(
|
| 1234 |
self,
|
| 1235 |
input_ids,
|
|
|
|
| 1267 |
return_dict=return_dict,
|
| 1268 |
)
|
| 1269 |
|
| 1270 |
+
if self.final_ln is None:
|
| 1271 |
+
final_output = outputs[0]
|
| 1272 |
+
else:
|
| 1273 |
+
final_output = self.final_ln(outputs[0])
|
| 1274 |
+
|
| 1275 |
if not return_dict:
|
| 1276 |
+
return (final_output,) + outputs[1:]
|
| 1277 |
|
| 1278 |
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
| 1279 |
+
last_hidden_state=final_output,
|
| 1280 |
hidden_states=outputs.hidden_states,
|
| 1281 |
attentions=outputs.attentions,
|
| 1282 |
cross_attentions=outputs.cross_attentions,
|
src/dalle_mini/model/partitions.py
CHANGED
|
@@ -65,7 +65,7 @@ def set_partitions(in_dict, use_scan):
|
|
| 65 |
print(f"Unmatched -> {k}")
|
| 66 |
l = list(result.keys())
|
| 67 |
if use_scan:
|
| 68 |
-
# add None dimension to
|
| 69 |
result = {
|
| 70 |
k: (P(*(None,) + v) if v is not None else None)
|
| 71 |
if any(x in k for x in ["FlaxBartEncoderLayers", "FlaxBartDecoderLayers"])
|
|
|
|
| 65 |
print(f"Unmatched -> {k}")
|
| 66 |
l = list(result.keys())
|
| 67 |
if use_scan:
|
| 68 |
+
# add None dimension to layers
|
| 69 |
result = {
|
| 70 |
k: (P(*(None,) + v) if v is not None else None)
|
| 71 |
if any(x in k for x in ["FlaxBartEncoderLayers", "FlaxBartDecoderLayers"])
|
tools/train/config/mega/config.json
CHANGED
|
@@ -7,14 +7,14 @@
|
|
| 7 |
"decoder_attention_heads": 32,
|
| 8 |
"decoder_ffn_dim": 4096,
|
| 9 |
"decoder_layerdrop": 0.0,
|
| 10 |
-
"decoder_layers":
|
| 11 |
"decoder_start_token_id": 16384,
|
| 12 |
"do_sample": true,
|
| 13 |
"dropout": 0.0,
|
| 14 |
"encoder_attention_heads": 32,
|
| 15 |
"encoder_ffn_dim": 4096,
|
| 16 |
"encoder_layerdrop": 0.0,
|
| 17 |
-
"encoder_layers":
|
| 18 |
"encoder_vocab_size": 50272,
|
| 19 |
"eos_token_id": 16385,
|
| 20 |
"force_ln_scale": false,
|
|
|
|
| 7 |
"decoder_attention_heads": 32,
|
| 8 |
"decoder_ffn_dim": 4096,
|
| 9 |
"decoder_layerdrop": 0.0,
|
| 10 |
+
"decoder_layers": 24,
|
| 11 |
"decoder_start_token_id": 16384,
|
| 12 |
"do_sample": true,
|
| 13 |
"dropout": 0.0,
|
| 14 |
"encoder_attention_heads": 32,
|
| 15 |
"encoder_ffn_dim": 4096,
|
| 16 |
"encoder_layerdrop": 0.0,
|
| 17 |
+
"encoder_layers": 24,
|
| 18 |
"encoder_vocab_size": 50272,
|
| 19 |
"eos_token_id": 16385,
|
| 20 |
"force_ln_scale": false,
|
tools/train/train.py
CHANGED
|
@@ -38,11 +38,10 @@ import optax
|
|
| 38 |
import transformers
|
| 39 |
import wandb
|
| 40 |
from datasets import Dataset
|
|
|
|
| 41 |
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
| 42 |
from flax.serialization import from_bytes, to_bytes
|
| 43 |
-
from flax.training import train_state
|
| 44 |
from flax.training.common_utils import onehot
|
| 45 |
-
from jax import ShapeDtypeStruct
|
| 46 |
from jax.experimental import PartitionSpec, maps
|
| 47 |
from jax.experimental.compilation_cache import compilation_cache as cc
|
| 48 |
from jax.experimental.pjit import pjit, with_sharding_constraint
|
|
@@ -526,60 +525,78 @@ class TrainingArguments:
|
|
| 526 |
self.dp_devices = jax.device_count() // self.mp_devices
|
| 527 |
|
| 528 |
|
| 529 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 530 |
dropout_rng: jnp.ndarray = None
|
| 531 |
epoch: int = 0
|
| 532 |
train_time: float = 0.0 # total time the model trained
|
| 533 |
train_samples: int = 0 # number of samples seen
|
| 534 |
|
| 535 |
def apply_gradients(self, *, grads, **kwargs):
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 541 |
return self.replace(
|
| 542 |
step=self.step + 1,
|
| 543 |
-
params=
|
| 544 |
-
opt_state=
|
| 545 |
**kwargs,
|
| 546 |
)
|
| 547 |
|
| 548 |
@classmethod
|
| 549 |
def create(cls, *, apply_fn, params, tx, **kwargs):
|
| 550 |
-
opt_state =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 551 |
return cls(
|
| 552 |
step=0,
|
| 553 |
apply_fn=apply_fn,
|
| 554 |
params=params,
|
| 555 |
tx=tx,
|
| 556 |
-
opt_state=opt_state,
|
| 557 |
**kwargs,
|
| 558 |
)
|
| 559 |
|
| 560 |
-
@staticmethod
|
| 561 |
-
def unscan(params):
|
| 562 |
-
params = unfreeze(params)
|
| 563 |
-
for l in ["encoder", "decoder"]:
|
| 564 |
-
params["model"][l]["layers"] = jax.tree_map(
|
| 565 |
-
lambda x: {f"{i}": x[i] for i in range(len(x))},
|
| 566 |
-
params["model"][l]["layers"],
|
| 567 |
-
)
|
| 568 |
-
params = freeze(params)
|
| 569 |
-
return params
|
| 570 |
-
|
| 571 |
-
@staticmethod
|
| 572 |
-
def rescan(params):
|
| 573 |
-
params = unfreeze(params)
|
| 574 |
-
for l in ["encoder", "decoder"]:
|
| 575 |
-
params["model"][l]["layers"] = jax.tree_map(
|
| 576 |
-
lambda x: jnp.stack([x[f"{i}"] for i in range(len(x))]),
|
| 577 |
-
params["model"][l]["layers"],
|
| 578 |
-
is_leaf=lambda x: "0" in x,
|
| 579 |
-
)
|
| 580 |
-
params = freeze(params)
|
| 581 |
-
return params
|
| 582 |
-
|
| 583 |
|
| 584 |
def main():
|
| 585 |
# See all possible arguments by passing the --help flag to this script.
|
|
@@ -792,23 +809,6 @@ def main():
|
|
| 792 |
|
| 793 |
learning_rate_fn = create_learning_rate_fn()
|
| 794 |
|
| 795 |
-
# reshape params to split scanned layers for optimizers
|
| 796 |
-
if model.config.use_scan:
|
| 797 |
-
params_struct = unfreeze(model.params)
|
| 798 |
-
for l in ["encoder", "decoder"]:
|
| 799 |
-
params_struct["model"][l]["layers"] = jax.tree_map(
|
| 800 |
-
lambda x: {
|
| 801 |
-
f"{i}": ShapeDtypeStruct(shape=x.shape[1:], dtype=x.dtype)
|
| 802 |
-
for i in range(len(x))
|
| 803 |
-
},
|
| 804 |
-
params_struct["model"][l]["layers"],
|
| 805 |
-
)
|
| 806 |
-
params_struct = freeze(params_struct)
|
| 807 |
-
|
| 808 |
-
else:
|
| 809 |
-
params_struct = model.params
|
| 810 |
-
opt_param_spec = set_partitions(params_struct, False)
|
| 811 |
-
|
| 812 |
# create adam optimizer
|
| 813 |
if training_args.optim == "distributed_shampoo":
|
| 814 |
# parameters from https://github.com/tensorflow/lingvo/blob/03ee9d7cd50764b0424c7c863733c91fc0b053ec/lingvo/jax/optimizers.py#L729
|
|
@@ -820,7 +820,12 @@ def main():
|
|
| 820 |
"sqrt_n": GraftingType.SQRT_N,
|
| 821 |
"adagrad_normalized": GraftingType.ADAGRAD_NORMALIZED,
|
| 822 |
}[training_args.graft_type]
|
| 823 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 824 |
learning_rate_fn,
|
| 825 |
block_size=training_args.block_size,
|
| 826 |
beta1=training_args.beta1,
|
|
@@ -836,11 +841,7 @@ def main():
|
|
| 836 |
graft_type=graft_type,
|
| 837 |
nesterov=False,
|
| 838 |
exponent_override=0,
|
| 839 |
-
statistics_partition_spec=
|
| 840 |
-
None, training_args.shard_shampoo_across, None
|
| 841 |
-
)
|
| 842 |
-
if training_args.shard_shampoo_across != "2d"
|
| 843 |
-
else PartitionSpec(None, "dp", "mp"),
|
| 844 |
preconditioner_partition_spec=PartitionSpec(
|
| 845 |
training_args.shard_shampoo_across, None, None
|
| 846 |
)
|
|
@@ -860,14 +861,18 @@ def main():
|
|
| 860 |
best_effort_memory_usage_reduction=training_args.optim_quantized,
|
| 861 |
)
|
| 862 |
# get the real optimizer and helper functions
|
| 863 |
-
update_fn =
|
| 864 |
-
|
| 865 |
-
optimizer =
|
| 866 |
-
opt_fn =
|
| 867 |
-
|
| 868 |
-
|
| 869 |
-
|
| 870 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 871 |
|
| 872 |
elif training_args.optim == "adam":
|
| 873 |
optimizer = optax.adamw(
|
|
@@ -876,6 +881,8 @@ def main():
|
|
| 876 |
b2=training_args.beta2,
|
| 877 |
eps=training_args.adam_epsilon,
|
| 878 |
)
|
|
|
|
|
|
|
| 879 |
elif training_args.optim == "adafactor":
|
| 880 |
# We use the default parameters here to initialize adafactor,
|
| 881 |
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
|
|
@@ -883,44 +890,66 @@ def main():
|
|
| 883 |
learning_rate=learning_rate_fn,
|
| 884 |
clipping_threshold=training_args.max_grad_norm,
|
| 885 |
)
|
|
|
|
| 886 |
|
| 887 |
# get PartitionSpec for optimizer state
|
| 888 |
-
def get_opt_state_spec_and_shape(
|
| 889 |
# get opt_state shape without actual init
|
| 890 |
-
opt_state_shape =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 891 |
|
| 892 |
-
if training_args.optim == "
|
|
|
|
|
|
|
| 893 |
|
| 894 |
-
|
|
|
|
|
|
|
| 895 |
if isinstance(x, FrozenDict):
|
| 896 |
# variables with same structure as params
|
| 897 |
-
return
|
| 898 |
else:
|
| 899 |
# other variables such as count
|
| 900 |
return None
|
| 901 |
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 912 |
|
| 913 |
-
elif training_args.optim == "distributed_shampoo":
|
| 914 |
-
opt_state_spec = opt_fn.pspec_fn(
|
| 915 |
-
params=params_struct,
|
| 916 |
-
params_partition_spec=param_spec,
|
| 917 |
-
partition_spec_for_statistics=PartitionSpec(None, "dp", None),
|
| 918 |
-
)
|
| 919 |
else:
|
| 920 |
raise NotImplementedError
|
| 921 |
-
return opt_state_spec, opt_state_shape
|
| 922 |
|
| 923 |
-
opt_state_spec, opt_state_shape = get_opt_state_spec_and_shape(
|
| 924 |
|
| 925 |
# create a mesh
|
| 926 |
mesh_shape = (training_args.dp_devices, training_args.mp_devices)
|
|
|
|
| 38 |
import transformers
|
| 39 |
import wandb
|
| 40 |
from datasets import Dataset
|
| 41 |
+
from flax import core, struct, traverse_util
|
| 42 |
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
| 43 |
from flax.serialization import from_bytes, to_bytes
|
|
|
|
| 44 |
from flax.training.common_utils import onehot
|
|
|
|
| 45 |
from jax.experimental import PartitionSpec, maps
|
| 46 |
from jax.experimental.compilation_cache import compilation_cache as cc
|
| 47 |
from jax.experimental.pjit import pjit, with_sharding_constraint
|
|
|
|
| 525 |
self.dp_devices = jax.device_count() // self.mp_devices
|
| 526 |
|
| 527 |
|
| 528 |
+
def split_params(data):
|
| 529 |
+
"""Split params between scanned and non-scanned"""
|
| 530 |
+
flat = traverse_util.flatten_dict(unfreeze(data))
|
| 531 |
+
split = {"standard": {}, "scanned_encoder": {}, "scanned_decoder": {}}
|
| 532 |
+
for k, v in flat.items():
|
| 533 |
+
if "FlaxBartEncoderLayers" in k:
|
| 534 |
+
split["scanned_encoder"][k] = v
|
| 535 |
+
elif "FlaxBartDecoderLayers" in k:
|
| 536 |
+
split["scanned_decoder"][k] = v
|
| 537 |
+
else:
|
| 538 |
+
split["standard"][k] = v
|
| 539 |
+
for k, v in split.items():
|
| 540 |
+
split[k] = freeze(traverse_util.unflatten_dict(v))
|
| 541 |
+
return split
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
def unsplit_params(data):
|
| 545 |
+
flat = {}
|
| 546 |
+
for k in ["standard", "scanned_encoder", "scanned_decoder"]:
|
| 547 |
+
flat.update(traverse_util.flatten_dict(unfreeze(data[k])))
|
| 548 |
+
return freeze(traverse_util.unflatten_dict(flat))
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
class TrainState(struct.PyTreeNode):
|
| 552 |
+
step: int
|
| 553 |
+
params: core.FrozenDict[str, Any]
|
| 554 |
+
opt_state: optax.OptState
|
| 555 |
+
apply_fn: Callable = struct.field(pytree_node=False)
|
| 556 |
+
tx: optax.GradientTransformation = struct.field(pytree_node=False)
|
| 557 |
dropout_rng: jnp.ndarray = None
|
| 558 |
epoch: int = 0
|
| 559 |
train_time: float = 0.0 # total time the model trained
|
| 560 |
train_samples: int = 0 # number of samples seen
|
| 561 |
|
| 562 |
def apply_gradients(self, *, grads, **kwargs):
|
| 563 |
+
grads = split_params(grads)
|
| 564 |
+
params = split_params(self.params)
|
| 565 |
+
opt_state = {}
|
| 566 |
+
# we loop over keys: "standard", "scanned_encoder", "scanned_decoder"
|
| 567 |
+
for k, param in params.items():
|
| 568 |
+
update_fn = self.tx[k].update
|
| 569 |
+
if "scanned" in k:
|
| 570 |
+
update_fn = jax.vmap(update_fn, in_axes=(0, 0, 0), out_axes=(0, 0))
|
| 571 |
+
updates, new_opt_state = update_fn(grads[k], self.opt_state[k], param)
|
| 572 |
+
params[k] = optax.apply_updates(param, updates)
|
| 573 |
+
opt_state[k] = new_opt_state
|
| 574 |
+
params = unsplit_params(params)
|
| 575 |
+
|
| 576 |
return self.replace(
|
| 577 |
step=self.step + 1,
|
| 578 |
+
params=params,
|
| 579 |
+
opt_state=freeze(opt_state),
|
| 580 |
**kwargs,
|
| 581 |
)
|
| 582 |
|
| 583 |
@classmethod
|
| 584 |
def create(cls, *, apply_fn, params, tx, **kwargs):
|
| 585 |
+
opt_state = {}
|
| 586 |
+
for k, p in split_params(params).items():
|
| 587 |
+
init_fn = tx[k].init
|
| 588 |
+
if "scanned" in k:
|
| 589 |
+
init_fn = jax.vmap(init_fn)
|
| 590 |
+
opt_state[k] = init_fn(p)
|
| 591 |
return cls(
|
| 592 |
step=0,
|
| 593 |
apply_fn=apply_fn,
|
| 594 |
params=params,
|
| 595 |
tx=tx,
|
| 596 |
+
opt_state=freeze(opt_state),
|
| 597 |
**kwargs,
|
| 598 |
)
|
| 599 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 600 |
|
| 601 |
def main():
|
| 602 |
# See all possible arguments by passing the --help flag to this script.
|
|
|
|
| 809 |
|
| 810 |
learning_rate_fn = create_learning_rate_fn()
|
| 811 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 812 |
# create adam optimizer
|
| 813 |
if training_args.optim == "distributed_shampoo":
|
| 814 |
# parameters from https://github.com/tensorflow/lingvo/blob/03ee9d7cd50764b0424c7c863733c91fc0b053ec/lingvo/jax/optimizers.py#L729
|
|
|
|
| 820 |
"sqrt_n": GraftingType.SQRT_N,
|
| 821 |
"adagrad_normalized": GraftingType.ADAGRAD_NORMALIZED,
|
| 822 |
}[training_args.graft_type]
|
| 823 |
+
statistics_partition_spec = (
|
| 824 |
+
PartitionSpec(None, training_args.shard_shampoo_across, None)
|
| 825 |
+
if training_args.shard_shampoo_across != "2d"
|
| 826 |
+
else PartitionSpec(None, "dp", "mp")
|
| 827 |
+
)
|
| 828 |
+
opt = distributed_shampoo(
|
| 829 |
learning_rate_fn,
|
| 830 |
block_size=training_args.block_size,
|
| 831 |
beta1=training_args.beta1,
|
|
|
|
| 841 |
graft_type=graft_type,
|
| 842 |
nesterov=False,
|
| 843 |
exponent_override=0,
|
| 844 |
+
statistics_partition_spec=statistics_partition_spec,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 845 |
preconditioner_partition_spec=PartitionSpec(
|
| 846 |
training_args.shard_shampoo_across, None, None
|
| 847 |
)
|
|
|
|
| 861 |
best_effort_memory_usage_reduction=training_args.optim_quantized,
|
| 862 |
)
|
| 863 |
# get the real optimizer and helper functions
|
| 864 |
+
update_fn = opt.update
|
| 865 |
+
|
| 866 |
+
optimizer = {}
|
| 867 |
+
opt_fn = {}
|
| 868 |
+
for k, p in split_params(model.params).items():
|
| 869 |
+
if "scanned" in k:
|
| 870 |
+
p = jax.eval_shape(lambda x: jax.tree_map(lambda y: y[0], x), p)
|
| 871 |
+
optimizer[k] = opt.init(p)
|
| 872 |
+
opt_fn[k] = NamedTuple("opt_fn", pspec_fn=Any, shape_and_dtype_fn=Any)(
|
| 873 |
+
optimizer[k].pspec_fn, optimizer[k].shape_and_dtype_fn
|
| 874 |
+
)
|
| 875 |
+
optimizer[k] = optax.GradientTransformation(optimizer[k].init_fn, update_fn)
|
| 876 |
|
| 877 |
elif training_args.optim == "adam":
|
| 878 |
optimizer = optax.adamw(
|
|
|
|
| 881 |
b2=training_args.beta2,
|
| 882 |
eps=training_args.adam_epsilon,
|
| 883 |
)
|
| 884 |
+
optimizer = {k: optimizer for k in split_params(model.params)}
|
| 885 |
+
|
| 886 |
elif training_args.optim == "adafactor":
|
| 887 |
# We use the default parameters here to initialize adafactor,
|
| 888 |
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
|
|
|
|
| 890 |
learning_rate=learning_rate_fn,
|
| 891 |
clipping_threshold=training_args.max_grad_norm,
|
| 892 |
)
|
| 893 |
+
optimizer = {k: optimizer for k in split_params(model.params)}
|
| 894 |
|
| 895 |
# get PartitionSpec for optimizer state
|
| 896 |
+
def get_opt_state_spec_and_shape():
|
| 897 |
# get opt_state shape without actual init
|
| 898 |
+
opt_state_shape = {}
|
| 899 |
+
for k, p in split_params(model.params).items():
|
| 900 |
+
if "scanned" not in k:
|
| 901 |
+
opt_state_shape[k] = jax.eval_shape(optimizer[k].init, p)
|
| 902 |
+
else:
|
| 903 |
+
opt_state_shape[k] = jax.eval_shape(jax.vmap(optimizer[k].init), p)
|
| 904 |
|
| 905 |
+
if training_args.optim == "adafactor":
|
| 906 |
+
# factorized state must be replicated (rank different than params)
|
| 907 |
+
opt_state_spec = {k: None for k in split_params(model.params)}
|
| 908 |
|
| 909 |
+
elif training_args.optim in ["adam", "distributed_shampoo"]:
|
| 910 |
+
|
| 911 |
+
def _opt_state_spec_per_leaf(x, spec):
|
| 912 |
if isinstance(x, FrozenDict):
|
| 913 |
# variables with same structure as params
|
| 914 |
+
return spec
|
| 915 |
else:
|
| 916 |
# other variables such as count
|
| 917 |
return None
|
| 918 |
|
| 919 |
+
split_spec = split_params(set_partitions(model.params, False))
|
| 920 |
+
opt_state_spec = {}
|
| 921 |
+
for k, p in split_params(model.params).items():
|
| 922 |
+
if "scanned" in k:
|
| 923 |
+
p = jax.eval_shape(lambda x: jax.tree_map(lambda y: y[0], x), p)
|
| 924 |
+
if training_args.optim == "adam":
|
| 925 |
+
opt_state_spec[k] = jax.tree_map(
|
| 926 |
+
_opt_state_spec_per_leaf,
|
| 927 |
+
opt_state_shape[k],
|
| 928 |
+
split_spec[k],
|
| 929 |
+
# return None spec for empty elements
|
| 930 |
+
is_leaf=lambda x: isinstance(x, (FrozenDict, optax.EmptyState)),
|
| 931 |
+
)
|
| 932 |
+
elif training_args.optim == "distributed_shampoo":
|
| 933 |
+
opt_state_spec[k] = opt_fn[k].pspec_fn(
|
| 934 |
+
p,
|
| 935 |
+
split_spec[k],
|
| 936 |
+
statistics_partition_spec,
|
| 937 |
+
)
|
| 938 |
+
# add dimension for scanned params
|
| 939 |
+
if "scanned" in k:
|
| 940 |
+
opt_state_spec[k] = jax.tree_map(
|
| 941 |
+
lambda x: PartitionSpec(*(None,) + x)
|
| 942 |
+
if x is not None
|
| 943 |
+
else None,
|
| 944 |
+
opt_state_spec[k],
|
| 945 |
+
is_leaf=lambda x: isinstance(x, PartitionSpec),
|
| 946 |
+
)
|
| 947 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 948 |
else:
|
| 949 |
raise NotImplementedError
|
| 950 |
+
return freeze(opt_state_spec), freeze(opt_state_shape)
|
| 951 |
|
| 952 |
+
opt_state_spec, opt_state_shape = get_opt_state_spec_and_shape()
|
| 953 |
|
| 954 |
# create a mesh
|
| 955 |
mesh_shape = (training_args.dp_devices, training_args.mp_devices)
|