Spaces:
Runtime error
Runtime error
| ''' | |
| Reference: https://github.com/alibaba-damo-academy/FunASR | |
| pip install funasr | |
| pip install modelscope | |
| pip install -U rotary_embedding_torch | |
| ''' | |
| try: | |
| from funasr import AutoModel | |
| except: | |
| print("如果想使用FunASR,请先安装funasr,若使用Whisper,请忽略此条信息") | |
| import os | |
| import sys | |
| sys.path.append('./') | |
| from src.cost_time import calculate_time | |
| class FunASR: | |
| def __init__(self) -> None: | |
| # 定义模型的自定义路径 | |
| model_path = "FunASR/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" | |
| vad_model_path = "FunASR/speech_fsmn_vad_zh-cn-16k-common-pytorch" | |
| punc_model_path = "FunASR/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" | |
| # 检查文件是否存在于 FunASR 目录下 | |
| model_exists = os.path.exists(model_path) | |
| vad_model_exists = os.path.exists(vad_model_path) | |
| punc_model_exists = os.path.exists(punc_model_path) | |
| # Modelscope AutoDownload | |
| self.model = AutoModel( | |
| model=model_path if model_exists else "paraformer-zh", | |
| vad_model=vad_model_path if vad_model_exists else "fsmn-vad", | |
| punc_model=punc_model_path if punc_model_exists else "ct-punc-c", | |
| ) | |
| # 自定义路径 | |
| # self.model = AutoModel(model="FunASR/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", # model_revision="v2.0.4", | |
| # vad_model="FunASR/speech_fsmn_vad_zh-cn-16k-common-pytorch", # vad_model_revision="v2.0.4", | |
| # punc_model="FunASR/punc_ct-transformer_zh-cn-common-vocab272727-pytorch", # punc_model_revision="v2.0.4", | |
| # # spk_model="cam++", spk_model_revision="v2.0.2", | |
| # ) | |
| def transcribe(self, audio_file): | |
| res = self.model.generate(input=audio_file, | |
| batch_size_s=300) | |
| print(res) | |
| return res[0]['text'] | |
| if __name__ == "__main__": | |
| import os | |
| # 创建ASR对象并进行语音识别 | |
| audio_file = "output.wav" # 音频文件路径 | |
| if not os.path.exists(audio_file): | |
| os.system('edge-tts --text "hello" --write-media output.wav') | |
| asr = FunASR() | |
| print(asr.transcribe(audio_file)) |