import os import requests llm_service_host = os.environ.get("LLM_SERVICE_HOST", "localhost") llm_service_port = os.environ.get("LLM_SERVICE_PORT", 8002) # API endpoint URLs CHANGE_MODEL_URL = f"http://{llm_service_host}:{llm_service_port}/llm_change_model/" LLM_RESPONSE_URL = f"http://{llm_service_host}:{llm_service_port}/llm_response/" def change_model(model_name, gemini_apikey='', openai_apikey='', proxy_url=None): """请求更换LLM模型""" params = { "model_name": model_name, "gemini_apikey": gemini_apikey, "openai_apikey": openai_apikey, "proxy_url": proxy_url, } response = requests.post(CHANGE_MODEL_URL, params=params) if response.status_code == 200: print(f"模型更换成功: {response.json()}") else: print(f"模型更换失败: {response.status_code}, {response.text}") def request_llm_response(payload): """请求LLM生成回答""" response = requests.post(LLM_RESPONSE_URL, json=payload) if response.status_code == 200: print(f"LLM 回复成功: {response.json()}") else: print(f"LLM 回复失败: {response.status_code}, {response.text}") if __name__ == "__main__": # 要测试的模型列表 models = [ # "GPT4Free", "Qwen", ] # 循环更换模型并生成LLM回复 for model_name in models: print(f"切换到模型: {model_name}") change_model(model_name, openai_apikey="your_openai_api_key") # 请求LLM生成回答 payload = { "question": "请问什么是FastAPI?", "model_name": model_name, "gemini_apikey": "", "openai_apikey": "your_openai_api_key", # "proxy_url": None } request_llm_response(payload) print("\n" + "-"*50 + "\n")