File size: 1,278 Bytes
d26c509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import pandas as pd
import sqlite3
import chainlit as cl
from openai import AsyncOpenAI
from pandasai import SmartDataframe
from langchain_community.llms import Ollama
from langchain_groq.chat_models import ChatGroq 
import sqlite3
import os

llm = ChatGroq(model_name="llama3-70b-8192", api_key = os.environ["GROQ_API_KEY"])

@cl.on_chat_start
def start_chat():
    # Set initial message history
    cl.user_session.set(
        "message_history",
        [{"role": "system", "content": "You are a helpful assistant."}],
    )

@cl.on_message
async def main(message: cl.Message):
    # Retrieve message history
    message_history = cl.user_session.get("message_history")
    message_history.append({"role": "user", "content": message.content})

    # Load data
    # df = pd.read_excel('data.xlsx')
    # df = pd.read_csv('data.csv')
    conn = sqlite3.connect('data.db')
    df = pd.read_sql('SELECT * FROM countries', conn)
    conn.close()

    df = SmartDataframe(df, config={"llm": llm})
    
    question = message.content
    response = df.chat(question)
    msg = cl.Message(content=response)
    
    await msg.send()

    # Update message history and send final message
    message_history.append({"role": "assistant", "content": msg.content})
    await msg.update()