""" ML Model Loader and Utilities Handles loading and using the conflict prediction model and package embeddings. Loads from local files if available, otherwise downloads from Hugging Face Hub. """ import json import pickle from pathlib import Path from typing import Dict, List, Tuple, Optional import numpy as np from packaging.requirements import Requirement # Try to import huggingface_hub for model downloading try: from huggingface_hub import hf_hub_download HF_HUB_AVAILABLE = True except ImportError: HF_HUB_AVAILABLE = False print("Warning: huggingface_hub not available. Models must be loaded locally.") class ConflictPredictor: """Load and use the conflict prediction model.""" def __init__(self, model_path: Optional[Path] = None, repo_id: str = "ysakhale/dependency-conflict-models"): """Initialize the conflict predictor. Args: model_path: Local path to model file (optional) repo_id: Hugging Face repository ID to download from if local file not found """ self.repo_id = repo_id self.model = None self.model_path = model_path # Try local path first if model_path is None: model_path = Path(__file__).parent / "models" / "conflict_predictor.pkl" self.model_path = model_path # Try loading from local file if model_path.exists(): try: with open(model_path, 'rb') as f: self.model = pickle.load(f) print(f"Loaded conflict prediction model from {model_path}") return except Exception as e: print(f"Could not load conflict prediction model from local: {e}") # If local file doesn't exist, try downloading from HF Hub if HF_HUB_AVAILABLE: try: print(f"Model not found locally. Downloading from Hugging Face Hub: {repo_id}") downloaded_path = hf_hub_download( repo_id=repo_id, filename="conflict_predictor.pkl", repo_type="model" ) with open(downloaded_path, 'rb') as f: self.model = pickle.load(f) print(f"Loaded conflict prediction model from Hugging Face Hub") # Optionally cache it locally try: model_path.parent.mkdir(parents=True, exist_ok=True) import shutil shutil.copy(downloaded_path, model_path) print(f"Cached model locally at {model_path}") except: pass return except Exception as e: print(f"Could not download model from Hugging Face Hub: {e}") print(f"Warning: Conflict prediction model not available") def extract_features(self, requirements_text: str) -> np.ndarray: """Extract features from requirements text (same as training).""" features = [] packages = {} lines = requirements_text.strip().split('\n') num_packages = 0 has_pins = 0 version_specificity = [] for line in lines: line = line.strip() if not line or line.startswith('#'): continue try: req = Requirement(line) pkg_name = req.name.lower() specifier = str(req.specifier) if req.specifier else '' if pkg_name in packages: features.append(1) # has_duplicate flag else: packages[pkg_name] = specifier num_packages += 1 if specifier: has_pins += 1 if '==' in specifier: version_specificity.append(3) elif '>=' in specifier or '<=' in specifier: version_specificity.append(2) else: version_specificity.append(1) else: version_specificity.append(0) except: pass feature_vec = [] feature_vec.append(min(num_packages / 20.0, 1.0)) feature_vec.append(has_pins / max(num_packages, 1)) feature_vec.append(np.mean(version_specificity) / 3.0 if version_specificity else 0) feature_vec.append(1 if len(packages) < num_packages else 0) common_packages = [ 'torch', 'pytorch-lightning', 'tensorflow', 'keras', 'fastapi', 'pydantic', 'numpy', 'pandas', 'scipy', 'scikit-learn', 'matplotlib', 'seaborn', 'requests', 'httpx', 'sqlalchemy', 'alembic', 'uvicorn', 'starlette', 'langchain', 'openai', 'chromadb', 'redis', 'celery', 'gunicorn', 'pillow', 'opencv-python', 'beautifulsoup4', 'scrapy', 'plotly', 'jax' ] for pkg in common_packages: feature_vec.append(1 if pkg in packages else 0) has_torch = 'torch' in packages has_pl = 'pytorch-lightning' in packages has_tf = 'tensorflow' in packages has_keras = 'keras' in packages has_fastapi = 'fastapi' in packages has_pydantic = 'pydantic' in packages feature_vec.append(1 if (has_torch and has_pl) else 0) feature_vec.append(1 if (has_tf and has_keras) else 0) feature_vec.append(1 if (has_fastapi and has_pydantic) else 0) return np.array(feature_vec) def predict(self, requirements_text: str) -> Tuple[bool, float]: """ Predict if requirements have conflicts. Returns: (has_conflict, confidence_score) """ if self.model is None: return False, 0.0 try: features = self.extract_features(requirements_text) features = features.reshape(1, -1) prediction = self.model.predict(features)[0] probability = self.model.predict_proba(features)[0] has_conflict = bool(prediction) confidence = float(probability[1] if has_conflict else probability[0]) return has_conflict, confidence except Exception as e: print(f"Error in conflict prediction: {e}") return False, 0.0 class PackageEmbeddings: """Load and use package embeddings for similarity matching.""" def __init__(self, embeddings_path: Optional[Path] = None, repo_id: str = "ysakhale/dependency-conflict-models"): """Initialize package embeddings. Args: embeddings_path: Local path to embeddings file (optional) repo_id: Hugging Face repository ID to download from if local file not found """ self.repo_id = repo_id self.embeddings = {} self.embeddings_path = embeddings_path self.model = None if embeddings_path is None: embeddings_path = Path(__file__).parent / "models" / "package_embeddings.json" self.embeddings_path = embeddings_path # Try loading from local file if embeddings_path.exists(): try: with open(embeddings_path, 'r') as f: self.embeddings = json.load(f) print(f"Loaded {len(self.embeddings)} package embeddings from {embeddings_path}") return except Exception as e: print(f"Could not load embeddings from local: {e}") # If local file doesn't exist, try downloading from HF Hub if HF_HUB_AVAILABLE: try: print(f"Embeddings not found locally. Downloading from Hugging Face Hub: {repo_id}") downloaded_path = hf_hub_download( repo_id=repo_id, filename="package_embeddings.json", repo_type="model" ) with open(downloaded_path, 'r') as f: self.embeddings = json.load(f) print(f"Loaded {len(self.embeddings)} package embeddings from Hugging Face Hub") # Optionally cache it locally try: embeddings_path.parent.mkdir(parents=True, exist_ok=True) import shutil shutil.copy(downloaded_path, embeddings_path) print(f"Cached embeddings locally at {embeddings_path}") except: pass return except Exception as e: print(f"Could not download embeddings from Hugging Face Hub: {e}") print(f"Warning: Package embeddings not available") def _load_model(self): """Lazy load the sentence transformer model.""" if self.model is None: try: from sentence_transformers import SentenceTransformer self.model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') except ImportError: print("⚠️ sentence-transformers not available, embedding similarity disabled") return None return self.model def get_embedding(self, package_name: str) -> Optional[np.ndarray]: """Get embedding for a package (from cache or compute on-the-fly).""" package_lower = package_name.lower() # Check cache first if package_lower in self.embeddings: return np.array(self.embeddings[package_lower]) # Compute on-the-fly if model available model = self._load_model() if model is not None: embedding = model.encode([package_name])[0] # Cache it self.embeddings[package_lower] = embedding.tolist() return embedding return None def find_similar(self, package_name: str, top_k: int = 5, threshold: float = 0.6) -> List[Tuple[str, float]]: """ Find similar packages using cosine similarity. Returns: List of (package_name, similarity_score) tuples """ query_emb = self.get_embedding(package_name) if query_emb is None: return [] similarities = [] for pkg, emb in self.embeddings.items(): if pkg == package_name.lower(): continue emb_array = np.array(emb) # Cosine similarity similarity = np.dot(query_emb, emb_array) / ( np.linalg.norm(query_emb) * np.linalg.norm(emb_array) ) if similarity >= threshold: similarities.append((pkg, float(similarity))) # Sort by similarity and return top_k similarities.sort(key=lambda x: x[1], reverse=True) return similarities[:top_k] def get_best_match(self, package_name: str, threshold: float = 0.7) -> Optional[str]: """Get the best matching package name.""" similar = self.find_similar(package_name, top_k=1, threshold=threshold) if similar: return similar[0][0] return None