Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,36 +2,24 @@ import streamlit as st
|
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
import os
|
| 5 |
-
import tempfile
|
| 6 |
import joblib
|
| 7 |
import pickle
|
| 8 |
-
|
| 9 |
-
# Try to import keras only if available (for .h5 models)
|
| 10 |
try:
|
| 11 |
from tensorflow.keras.models import load_model as keras_load_model
|
| 12 |
KERAS_AVAILABLE = True
|
| 13 |
except Exception:
|
| 14 |
KERAS_AVAILABLE = False
|
| 15 |
|
| 16 |
-
st.set_page_config(page_title="House Price Predictor", layout="centered")
|
| 17 |
-
|
| 18 |
st.title("🏠 Simple House Price Predictor")
|
| 19 |
-
st.write("
|
| 20 |
-
|
| 21 |
-
# Sidebar: model selection / upload
|
| 22 |
-
st.sidebar.header("Model")
|
| 23 |
-
DEFAULT_MODEL_NAMES = ["model.joblib", "model.pkl", "model.h5"]
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
break
|
| 30 |
|
| 31 |
-
|
| 32 |
-
use_local = st.sidebar.checkbox("Use model file from repository (if present)", value=(selected_local is not None))
|
| 33 |
-
|
| 34 |
-
@st.cache_resource
|
| 35 |
def load_model_from_path(path):
|
| 36 |
"""Load model from a local path (joblib/pickle/keras .h5)."""
|
| 37 |
ext = os.path.splitext(path)[1].lower()
|
|
@@ -43,69 +31,33 @@ def load_model_from_path(path):
|
|
| 43 |
return pickle.load(f)
|
| 44 |
if ext == ".h5":
|
| 45 |
if not KERAS_AVAILABLE:
|
| 46 |
-
raise RuntimeError("Keras
|
| 47 |
return keras_load_model(path)
|
| 48 |
raise ValueError("Unsupported model extension: " + ext)
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
suffix = os.path.splitext(uploaded_file.name)[1].lower()
|
| 55 |
-
# write to temp file
|
| 56 |
-
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=suffix)
|
| 57 |
-
tmp.write(uploaded_file.getbuffer())
|
| 58 |
-
tmp.flush()
|
| 59 |
-
tmp.close()
|
| 60 |
-
model = load_model_from_path(tmp.name)
|
| 61 |
-
try:
|
| 62 |
-
os.unlink(tmp.name)
|
| 63 |
-
except Exception:
|
| 64 |
-
pass
|
| 65 |
-
return model
|
| 66 |
|
| 67 |
-
# Attempt to load
|
| 68 |
model = None
|
| 69 |
-
if
|
| 70 |
try:
|
| 71 |
-
model =
|
| 72 |
-
st.sidebar.success(f"Loaded
|
| 73 |
except Exception as e:
|
| 74 |
-
st.sidebar.error(f"Failed to load
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
st.sidebar.success(f"Loaded uploaded model: {uploaded_model.name}")
|
| 80 |
-
except Exception as e:
|
| 81 |
-
st.sidebar.error(f"Failed to load uploaded model: {e}")
|
| 82 |
-
|
| 83 |
-
if model is None:
|
| 84 |
-
st.sidebar.info("No model loaded yet. Place model.joblib/model.pkl/model.h5 in repo or upload one.")
|
| 85 |
-
st.markdown(
|
| 86 |
-
"""
|
| 87 |
-
**How to get a model:**\n
|
| 88 |
-
- If using scikit-learn: `joblib.dump(your_model, 'model.joblib')` or `pickle.dump(your_model, open('model.pkl','wb'))`\n
|
| 89 |
-
- If using Keras: `model.save('model.h5')` (requires TensorFlow in the environment).
|
| 90 |
-
"""
|
| 91 |
-
)
|
| 92 |
|
| 93 |
st.markdown("---")
|
| 94 |
st.header("Input features")
|
| 95 |
|
| 96 |
-
#
|
| 97 |
-
# Common simple house price features:
|
| 98 |
-
# - OverallQual (1-10)
|
| 99 |
-
# - GrLivArea (square feet)
|
| 100 |
-
# - GarageCars (count)
|
| 101 |
-
# - TotalBsmtSF (sq ft)
|
| 102 |
-
# - FullBath (count)
|
| 103 |
-
# - YearBuilt (year)
|
| 104 |
-
#
|
| 105 |
-
# Make sure your trained model was trained on exactly these features in this order.
|
| 106 |
-
|
| 107 |
col1, col2 = st.columns(2)
|
| 108 |
-
|
| 109 |
with col1:
|
| 110 |
overall_qual = st.slider("Overall Quality (1 - 10)", 1, 10, 6)
|
| 111 |
gr_liv_area = st.number_input("Ground living area (sq ft)", min_value=100, max_value=10000, value=1500, step=50)
|
|
@@ -123,19 +75,15 @@ predict_button = st.button("Predict House Price")
|
|
| 123 |
|
| 124 |
def model_predict(model_obj, features_array):
|
| 125 |
"""Unify prediction call for sklearn-like and keras models."""
|
| 126 |
-
# reshape
|
| 127 |
X = np.array(features_array).reshape(1, -1)
|
| 128 |
-
#
|
| 129 |
try:
|
| 130 |
-
# scikit-learn like .predict
|
| 131 |
if hasattr(model_obj, "predict") and not (KERAS_AVAILABLE and hasattr(model_obj, "save")):
|
| 132 |
preds = model_obj.predict(X)
|
| 133 |
-
# sklearn regressors usually return array of shape (1,)
|
| 134 |
if isinstance(preds, (list, np.ndarray)):
|
| 135 |
return float(np.squeeze(preds))
|
| 136 |
return float(preds)
|
| 137 |
-
except Exception
|
| 138 |
-
# fallthrough to try keras
|
| 139 |
pass
|
| 140 |
|
| 141 |
# Try Keras model
|
|
@@ -150,23 +98,11 @@ def model_predict(model_obj, features_array):
|
|
| 150 |
|
| 151 |
if predict_button:
|
| 152 |
if model is None:
|
| 153 |
-
st.error("
|
| 154 |
else:
|
| 155 |
try:
|
| 156 |
pred = model_predict(model, input_vector)
|
| 157 |
-
# If your model predicts log(price) or scaled value, adjust accordingly.
|
| 158 |
st.success(f"Predicted house price: {pred:,.2f} (units same as model target)")
|
| 159 |
-
st.info("If
|
| 160 |
except Exception as e:
|
| 161 |
st.exception(f"Prediction failed: {e}")
|
| 162 |
-
|
| 163 |
-
st.markdown("---")
|
| 164 |
-
st.markdown("### Tips / Troubleshooting")
|
| 165 |
-
st.markdown(
|
| 166 |
-
"""
|
| 167 |
-
- Ensure the model was trained on exactly **these features in the same order**.\n
|
| 168 |
-
- If you trained using scaling/encoders (StandardScaler, OneHotEncoder), save and load those transformers and apply them to inputs before predicting.\n
|
| 169 |
-
- To include encoders/scalers, save a pipeline object (e.g., sklearn Pipeline) so the app only needs to call `pipeline.predict(X)`.\n
|
| 170 |
-
- If your model predicts a transformed target (e.g., log(price)), inverse-transform before displaying.\n
|
| 171 |
-
"""
|
| 172 |
-
)
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
import os
|
|
|
|
| 5 |
import joblib
|
| 6 |
import pickle
|
|
|
|
|
|
|
| 7 |
try:
|
| 8 |
from tensorflow.keras.models import load_model as keras_load_model
|
| 9 |
KERAS_AVAILABLE = True
|
| 10 |
except Exception:
|
| 11 |
KERAS_AVAILABLE = False
|
| 12 |
|
| 13 |
+
st.set_page_config(page_title="House Price Predictor (fixed model)", layout="centered")
|
|
|
|
| 14 |
st.title("🏠 Simple House Price Predictor")
|
| 15 |
+
st.write("This app loads a fixed model file: `house_price_model.h5` and predicts house price from features.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# -----------------------
|
| 18 |
+
# HARD-CODED MODEL PATH
|
| 19 |
+
# -----------------------
|
| 20 |
+
MODEL_PATH = "house_price_model.h5" # <-- hard-coded model filename
|
|
|
|
| 21 |
|
| 22 |
+
# Utility: load model from path (supports .h5, .joblib, .pkl)
|
|
|
|
|
|
|
|
|
|
| 23 |
def load_model_from_path(path):
|
| 24 |
"""Load model from a local path (joblib/pickle/keras .h5)."""
|
| 25 |
ext = os.path.splitext(path)[1].lower()
|
|
|
|
| 31 |
return pickle.load(f)
|
| 32 |
if ext == ".h5":
|
| 33 |
if not KERAS_AVAILABLE:
|
| 34 |
+
raise RuntimeError("TensorFlow/Keras not available. Add `tensorflow` to requirements.txt.")
|
| 35 |
return keras_load_model(path)
|
| 36 |
raise ValueError("Unsupported model extension: " + ext)
|
| 37 |
|
| 38 |
+
# Cached loader so HF/Streamlit won't reload unnecessarily
|
| 39 |
+
@st.cache_resource
|
| 40 |
+
def load_fixed_model():
|
| 41 |
+
return load_model_from_path(MODEL_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# Attempt to load the fixed model
|
| 44 |
model = None
|
| 45 |
+
if os.path.exists(MODEL_PATH):
|
| 46 |
try:
|
| 47 |
+
model = load_fixed_model()
|
| 48 |
+
st.sidebar.success(f"Loaded model: {MODEL_PATH}")
|
| 49 |
except Exception as e:
|
| 50 |
+
st.sidebar.error(f"Failed to load {MODEL_PATH}: {e}")
|
| 51 |
+
model = None
|
| 52 |
+
else:
|
| 53 |
+
st.sidebar.warning(f"Model file not found: {MODEL_PATH}")
|
| 54 |
+
st.sidebar.info("Add `house_price_model.h5` to the repo root (or your HF Space files) and re-run the app.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
st.markdown("---")
|
| 57 |
st.header("Input features")
|
| 58 |
|
| 59 |
+
# Feature inputs (keep these in same order your model expects)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
col1, col2 = st.columns(2)
|
|
|
|
| 61 |
with col1:
|
| 62 |
overall_qual = st.slider("Overall Quality (1 - 10)", 1, 10, 6)
|
| 63 |
gr_liv_area = st.number_input("Ground living area (sq ft)", min_value=100, max_value=10000, value=1500, step=50)
|
|
|
|
| 75 |
|
| 76 |
def model_predict(model_obj, features_array):
|
| 77 |
"""Unify prediction call for sklearn-like and keras models."""
|
|
|
|
| 78 |
X = np.array(features_array).reshape(1, -1)
|
| 79 |
+
# Try sklearn-like predict first
|
| 80 |
try:
|
|
|
|
| 81 |
if hasattr(model_obj, "predict") and not (KERAS_AVAILABLE and hasattr(model_obj, "save")):
|
| 82 |
preds = model_obj.predict(X)
|
|
|
|
| 83 |
if isinstance(preds, (list, np.ndarray)):
|
| 84 |
return float(np.squeeze(preds))
|
| 85 |
return float(preds)
|
| 86 |
+
except Exception:
|
|
|
|
| 87 |
pass
|
| 88 |
|
| 89 |
# Try Keras model
|
|
|
|
| 98 |
|
| 99 |
if predict_button:
|
| 100 |
if model is None:
|
| 101 |
+
st.error("Model not loaded. Ensure `house_price_model.h5` exists in repo and that `tensorflow` is installed.")
|
| 102 |
else:
|
| 103 |
try:
|
| 104 |
pred = model_predict(model, input_vector)
|
|
|
|
| 105 |
st.success(f"Predicted house price: {pred:,.2f} (units same as model target)")
|
| 106 |
+
st.info("If value seems off, ensure model expects these features in this order and any scalers/pipelines are included.")
|
| 107 |
except Exception as e:
|
| 108 |
st.exception(f"Prediction failed: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|