Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,275 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
[
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
[
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
---
|
| 5 |
|
| 6 |
+
# SynthPose (Transformers 🤗 VitPose Base variant)
|
| 7 |
+
|
| 8 |
+
The SynthPose model was proposed in [OpenCapBench: A Benchmark to Bridge Pose Estimation and Biomechanics](https://arxiv.org/abs/2406.09788) by Yoni Gozlan, Antoine Falisse, Scott Uhlrich, Anthony Gatti, Michael Black, Akshay Chaudhari.
|
| 9 |
+
|
| 10 |
+
# Intended use cases
|
| 11 |
+
|
| 12 |
+
This model uses a VitPose Base backbone.
|
| 13 |
+
SynthPose is a new approach that enables finetuning of pre-trained 2D human pose models to predict an arbitrarily denser set of keypoints for accurate kinematic analysis through the use of synthetic data.
|
| 14 |
+
More details are available in [OpenCapBench: A Benchmark to Bridge Pose Estimation and Biomechanics](https://arxiv.org/abs/2406.09788).
|
| 15 |
+
This particular variant was finetuned on a set of keypoints usually found on motion capture setups, and include coco keypoints as well.
|
| 16 |
+
|
| 17 |
+
The model predicts the following 52 markers:
|
| 18 |
+
|
| 19 |
+
```py
|
| 20 |
+
{
|
| 21 |
+
0: "Nose",
|
| 22 |
+
1: "L_Eye",
|
| 23 |
+
2: "R_Eye",
|
| 24 |
+
3: "L_Ear",
|
| 25 |
+
4: "R_Ear",
|
| 26 |
+
5: "L_Shoulder",
|
| 27 |
+
6: "R_Shoulder",
|
| 28 |
+
7: "L_Elbow",
|
| 29 |
+
8: "R_Elbow",
|
| 30 |
+
9: "L_Wrist",
|
| 31 |
+
10: "R_Wrist",
|
| 32 |
+
11: "L_Hip",
|
| 33 |
+
12: "R_Hip",
|
| 34 |
+
13: "L_Knee",
|
| 35 |
+
14: "R_Knee",
|
| 36 |
+
15: "L_Ankle",
|
| 37 |
+
16: "R_Ankle",
|
| 38 |
+
17: "sternum",
|
| 39 |
+
18: "rshoulder",
|
| 40 |
+
19: "lshoulder",
|
| 41 |
+
20: "r_lelbow",
|
| 42 |
+
21: "l_lelbow",
|
| 43 |
+
22: "r_melbow",
|
| 44 |
+
23: "l_melbow",
|
| 45 |
+
24: "r_lwrist",
|
| 46 |
+
25: "l_lwrist",
|
| 47 |
+
26: "r_mwrist",
|
| 48 |
+
27: "l_mwrist",
|
| 49 |
+
28: "r_ASIS",
|
| 50 |
+
29: "l_ASIS",
|
| 51 |
+
30: "r_PSIS",
|
| 52 |
+
31: "l_PSIS",
|
| 53 |
+
32: "r_knee",
|
| 54 |
+
33: "l_knee",
|
| 55 |
+
34: "r_mknee",
|
| 56 |
+
35: "l_mknee",
|
| 57 |
+
36: "r_ankle",
|
| 58 |
+
37: "l_ankle",
|
| 59 |
+
38: "r_mankle",
|
| 60 |
+
39: "l_mankle",
|
| 61 |
+
40: "r_5meta",
|
| 62 |
+
41: "l_5meta",
|
| 63 |
+
42: "r_toe",
|
| 64 |
+
43: "l_toe",
|
| 65 |
+
44: "r_big_toe",
|
| 66 |
+
45: "l_big_toe",
|
| 67 |
+
46: "l_calc",
|
| 68 |
+
47: "r_calc",
|
| 69 |
+
48: "C7",
|
| 70 |
+
49: "L2",
|
| 71 |
+
50: "T11",
|
| 72 |
+
51: "T6",
|
| 73 |
+
}
|
| 74 |
+
```
|
| 75 |
+
Where the first 17 keypoints are the COCO keypoints, and the next 35 are anatomical markers.
|
| 76 |
+
|
| 77 |
+
# Usage
|
| 78 |
+
|
| 79 |
+
## Image inference
|
| 80 |
+
|
| 81 |
+
Here's how to load the model and run inference on an image:
|
| 82 |
+
|
| 83 |
+
```py
|
| 84 |
+
import torch
|
| 85 |
+
import requests
|
| 86 |
+
import numpy as np
|
| 87 |
+
|
| 88 |
+
from PIL import Image
|
| 89 |
+
|
| 90 |
+
from transformers import (
|
| 91 |
+
AutoProcessor,
|
| 92 |
+
RTDetrForObjectDetection,
|
| 93 |
+
VitPoseForPoseEstimation,
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 97 |
+
|
| 98 |
+
url = "http://farm4.staticflickr.com/3300/3416216247_f9c6dfc939_z.jpg"
|
| 99 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 100 |
+
|
| 101 |
+
# ------------------------------------------------------------------------
|
| 102 |
+
# Stage 1. Detect humans on the image
|
| 103 |
+
# ------------------------------------------------------------------------
|
| 104 |
+
|
| 105 |
+
# You can choose detector by your choice
|
| 106 |
+
person_image_processor = AutoProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
|
| 107 |
+
person_model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365", device_map=device)
|
| 108 |
+
|
| 109 |
+
inputs = person_image_processor(images=image, return_tensors="pt").to(device)
|
| 110 |
+
|
| 111 |
+
with torch.no_grad():
|
| 112 |
+
outputs = person_model(**inputs)
|
| 113 |
+
|
| 114 |
+
results = person_image_processor.post_process_object_detection(
|
| 115 |
+
outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
|
| 116 |
+
)
|
| 117 |
+
result = results[0] # take first image results
|
| 118 |
+
|
| 119 |
+
# Human label refers 0 index in COCO dataset
|
| 120 |
+
person_boxes = result["boxes"][result["labels"] == 0]
|
| 121 |
+
person_boxes = person_boxes.cpu().numpy()
|
| 122 |
+
|
| 123 |
+
# Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format
|
| 124 |
+
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
|
| 125 |
+
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]
|
| 126 |
+
|
| 127 |
+
# ------------------------------------------------------------------------
|
| 128 |
+
# Stage 2. Detect keypoints for each person found
|
| 129 |
+
# ------------------------------------------------------------------------
|
| 130 |
+
|
| 131 |
+
image_processor = AutoProcessor.from_pretrained("yonigozlan/synthpose-vit-base-hf")
|
| 132 |
+
model = VitPoseForPoseEstimation.from_pretrained("yonigozlan/synthpose-vit-base-hf", device_map=device)
|
| 133 |
+
|
| 134 |
+
inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)
|
| 135 |
+
|
| 136 |
+
with torch.no_grad():
|
| 137 |
+
outputs = model(**inputs)
|
| 138 |
+
|
| 139 |
+
pose_results = image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes])
|
| 140 |
+
image_pose_result = pose_results[0] # results for first image
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
### Visualization for supervision user
|
| 144 |
+
|
| 145 |
+
```py
|
| 146 |
+
import supervision as sv
|
| 147 |
+
|
| 148 |
+
xy = torch.stack([pose_result['keypoints'] for pose_result in image_pose_result]).cpu().numpy()
|
| 149 |
+
scores = torch.stack([pose_result['scores'] for pose_result in image_pose_result]).cpu().numpy()
|
| 150 |
+
|
| 151 |
+
key_points = sv.KeyPoints(
|
| 152 |
+
xy=xy, confidence=scores
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
vertex_annotator = sv.VertexAnnotator(
|
| 156 |
+
color=sv.Color.PINK,
|
| 157 |
+
radius=2
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
annotated_frame = vertex_annotator.annotate(
|
| 161 |
+
scene=image.copy(),
|
| 162 |
+
key_points=key_points
|
| 163 |
+
)
|
| 164 |
+
annotated_frame
|
| 165 |
+
```
|
| 166 |
+
|
| 167 |
+
<p>
|
| 168 |
+
<img src="vitpose_sv.png" width=375>
|
| 169 |
+
</p>
|
| 170 |
+
|
| 171 |
+
### Advanced manual visualization
|
| 172 |
+
```py
|
| 173 |
+
import math
|
| 174 |
+
import cv2
|
| 175 |
+
|
| 176 |
+
def draw_points(image, keypoints, scores, pose_keypoint_color, keypoint_score_threshold, radius, show_keypoint_weight):
|
| 177 |
+
if pose_keypoint_color is not None:
|
| 178 |
+
assert len(pose_keypoint_color) == len(keypoints)
|
| 179 |
+
for kid, (kpt, kpt_score) in enumerate(zip(keypoints, scores)):
|
| 180 |
+
x_coord, y_coord = int(kpt[0]), int(kpt[1])
|
| 181 |
+
if kpt_score > keypoint_score_threshold:
|
| 182 |
+
color = tuple(int(c) for c in pose_keypoint_color[kid])
|
| 183 |
+
if show_keypoint_weight:
|
| 184 |
+
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
|
| 185 |
+
transparency = max(0, min(1, kpt_score))
|
| 186 |
+
cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
|
| 187 |
+
else:
|
| 188 |
+
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
|
| 189 |
+
|
| 190 |
+
def draw_links(image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold, thickness, show_keypoint_weight, stick_width = 2):
|
| 191 |
+
height, width, _ = image.shape
|
| 192 |
+
if keypoint_edges is not None and link_colors is not None:
|
| 193 |
+
assert len(link_colors) == len(keypoint_edges)
|
| 194 |
+
for sk_id, sk in enumerate(keypoint_edges):
|
| 195 |
+
x1, y1, score1 = (int(keypoints[sk[0], 0]), int(keypoints[sk[0], 1]), scores[sk[0]])
|
| 196 |
+
x2, y2, score2 = (int(keypoints[sk[1], 0]), int(keypoints[sk[1], 1]), scores[sk[1]])
|
| 197 |
+
if (
|
| 198 |
+
x1 > 0
|
| 199 |
+
and x1 < width
|
| 200 |
+
and y1 > 0
|
| 201 |
+
and y1 < height
|
| 202 |
+
and x2 > 0
|
| 203 |
+
and x2 < width
|
| 204 |
+
and y2 > 0
|
| 205 |
+
and y2 < height
|
| 206 |
+
and score1 > keypoint_score_threshold
|
| 207 |
+
and score2 > keypoint_score_threshold
|
| 208 |
+
):
|
| 209 |
+
color = tuple(int(c) for c in link_colors[sk_id])
|
| 210 |
+
if show_keypoint_weight:
|
| 211 |
+
X = (x1, x2)
|
| 212 |
+
Y = (y1, y2)
|
| 213 |
+
mean_x = np.mean(X)
|
| 214 |
+
mean_y = np.mean(Y)
|
| 215 |
+
length = ((Y[0] - Y[1]) ** 2 + (X[0] - X[1]) ** 2) ** 0.5
|
| 216 |
+
angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1]))
|
| 217 |
+
polygon = cv2.ellipse2Poly(
|
| 218 |
+
(int(mean_x), int(mean_y)), (int(length / 2), int(stick_width)), int(angle), 0, 360, 1
|
| 219 |
+
)
|
| 220 |
+
cv2.fillConvexPoly(image, polygon, color)
|
| 221 |
+
transparency = max(0, min(1, 0.5 * (keypoints[sk[0], 2] + keypoints[sk[1], 2])))
|
| 222 |
+
cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
|
| 223 |
+
else:
|
| 224 |
+
cv2.line(image, (x1, y1), (x2, y2), color, thickness=thickness)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
# Note: keypoint_edges and color palette are dataset-specific
|
| 228 |
+
keypoint_edges = model.config.edges
|
| 229 |
+
|
| 230 |
+
palette = np.array(
|
| 231 |
+
[
|
| 232 |
+
[255, 128, 0],
|
| 233 |
+
[255, 153, 51],
|
| 234 |
+
[255, 178, 102],
|
| 235 |
+
[230, 230, 0],
|
| 236 |
+
[255, 153, 255],
|
| 237 |
+
[153, 204, 255],
|
| 238 |
+
[255, 102, 255],
|
| 239 |
+
[255, 51, 255],
|
| 240 |
+
[102, 178, 255],
|
| 241 |
+
[51, 153, 255],
|
| 242 |
+
[255, 153, 153],
|
| 243 |
+
[255, 102, 102],
|
| 244 |
+
[255, 51, 51],
|
| 245 |
+
[153, 255, 153],
|
| 246 |
+
[102, 255, 102],
|
| 247 |
+
[51, 255, 51],
|
| 248 |
+
[0, 255, 0],
|
| 249 |
+
[0, 0, 255],
|
| 250 |
+
[255, 0, 0],
|
| 251 |
+
[255, 255, 255],
|
| 252 |
+
]
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
link_colors = palette[[0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16]]
|
| 256 |
+
keypoint_colors = palette[[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0]+[4]*(52-17)]
|
| 257 |
+
|
| 258 |
+
numpy_image = np.array(image)
|
| 259 |
+
|
| 260 |
+
for pose_result in image_pose_result:
|
| 261 |
+
scores = np.array(pose_result["scores"])
|
| 262 |
+
keypoints = np.array(pose_result["keypoints"])
|
| 263 |
+
|
| 264 |
+
# draw each point on image
|
| 265 |
+
draw_points(numpy_image, keypoints, scores, keypoint_colors, keypoint_score_threshold=0.3, radius=2, show_keypoint_weight=False)
|
| 266 |
+
|
| 267 |
+
# draw links
|
| 268 |
+
draw_links(numpy_image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold=0.3, thickness=1, show_keypoint_weight=False)
|
| 269 |
+
|
| 270 |
+
pose_image = Image.fromarray(numpy_image)
|
| 271 |
+
pose_image
|
| 272 |
+
```
|
| 273 |
+
<p>
|
| 274 |
+
<img src="vitpose_manual.png" width=375>
|
| 275 |
+
</p>
|