File size: 7,502 Bytes
22278bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0253448
 
 
 
 
 
 
22278bd
 
 
 
 
 
 
014c8ae
0c3f7a3
 
 
597ef24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c3f7a3
 
 
 
 
597ef24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c3f7a3
22278bd
 
014c8ae
22278bd
 
 
 
 
 
 
 
014c8ae
 
 
 
 
 
 
 
 
 
 
 
22278bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
---
pipeline_tag: text-generation
inference:
  parameters:
    temperature: 0.2
    top_p: 0.95
widget:
- text: 'def print_hello_world():'
  example_title: Hello world
  group: Python
datasets:
- bigcode/the-stack-v2-train
license: bigcode-openrail-m
library_name: transformers
tags:
- code
- TensorBlock
- GGUF
base_model: bigcode/starcoder2-7b
model-index:
- name: starcoder2-7b
  results:
  - task:
      type: text-generation
    dataset:
      name: CruxEval-I
      type: cruxeval-i
    metrics:
    - type: pass@1
      value: 34.6
  - task:
      type: text-generation
    dataset:
      name: DS-1000
      type: ds-1000
    metrics:
    - type: pass@1
      value: 27.8
  - task:
      type: text-generation
    dataset:
      name: GSM8K (PAL)
      type: gsm8k-pal
    metrics:
    - type: accuracy
      value: 40.4
  - task:
      type: text-generation
    dataset:
      name: HumanEval+
      type: humanevalplus
    metrics:
    - type: pass@1
      value: 29.9
  - task:
      type: text-generation
    dataset:
      name: HumanEval
      type: humaneval
    metrics:
    - type: pass@1
      value: 35.4
  - task:
      type: text-generation
    dataset:
      name: RepoBench-v1.1
      type: repobench-v1.1
    metrics:
    - type: edit-smiliarity
      value: 72.07
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>

[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co)
[![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2)
[![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock)
[![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock)


## bigcode/starcoder2-7b - GGUF

This repo contains GGUF format model files for [bigcode/starcoder2-7b](https://huggingface.co/bigcode/starcoder2-7b).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).


## Our projects
<table border="1" cellspacing="0" cellpadding="10">
  <tr>
    <th colspan="2" style="font-size: 25px;">Forge</th>
  </tr>
  <tr>
    <th colspan="2">
      <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
    </th>
  </tr>
  <tr>
    <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
  </tr>
  <tr>
    <th colspan="2">
      <a href="https://github.com/TensorBlock/forge" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸš€ Try it now! πŸš€</a>
    </th>
  </tr>

  <tr>
    <th style="font-size: 25px;">Awesome MCP Servers</th>
    <th style="font-size: 25px;">TensorBlock Studio</th>
  </tr>
  <tr>
    <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
    <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
  </tr>
  <tr>
    <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
    <th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
  </tr>
  <tr>
    <th>
      <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸ‘€ See what we built πŸ‘€</a>
    </th>
    <th>
      <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸ‘€ See what we built πŸ‘€</a>
    </th>
  </tr>
</table>
## Prompt template


```

```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [starcoder2-7b-Q2_K.gguf](https://huggingface.co/tensorblock/starcoder2-7b-GGUF/blob/main/starcoder2-7b-Q2_K.gguf) | Q2_K | 2.641 GB | smallest, significant quality loss - not recommended for most purposes |
| [starcoder2-7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/starcoder2-7b-GGUF/blob/main/starcoder2-7b-Q3_K_S.gguf) | Q3_K_S | 2.960 GB | very small, high quality loss |
| [starcoder2-7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/starcoder2-7b-GGUF/blob/main/starcoder2-7b-Q3_K_M.gguf) | Q3_K_M | 3.410 GB | very small, high quality loss |
| [starcoder2-7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/starcoder2-7b-GGUF/blob/main/starcoder2-7b-Q3_K_L.gguf) | Q3_K_L | 3.794 GB | small, substantial quality loss |
| [starcoder2-7b-Q4_0.gguf](https://huggingface.co/tensorblock/starcoder2-7b-GGUF/blob/main/starcoder2-7b-Q4_0.gguf) | Q4_0 | 3.820 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [starcoder2-7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/starcoder2-7b-GGUF/blob/main/starcoder2-7b-Q4_K_S.gguf) | Q4_K_S | 3.860 GB | small, greater quality loss |
| [starcoder2-7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/starcoder2-7b-GGUF/blob/main/starcoder2-7b-Q4_K_M.gguf) | Q4_K_M | 4.155 GB | medium, balanced quality - recommended |
| [starcoder2-7b-Q5_0.gguf](https://huggingface.co/tensorblock/starcoder2-7b-GGUF/blob/main/starcoder2-7b-Q5_0.gguf) | Q5_0 | 4.628 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [starcoder2-7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/starcoder2-7b-GGUF/blob/main/starcoder2-7b-Q5_K_S.gguf) | Q5_K_S | 4.628 GB | large, low quality loss - recommended |
| [starcoder2-7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/starcoder2-7b-GGUF/blob/main/starcoder2-7b-Q5_K_M.gguf) | Q5_K_M | 4.801 GB | large, very low quality loss - recommended |
| [starcoder2-7b-Q6_K.gguf](https://huggingface.co/tensorblock/starcoder2-7b-GGUF/blob/main/starcoder2-7b-Q6_K.gguf) | Q6_K | 5.487 GB | very large, extremely low quality loss |
| [starcoder2-7b-Q8_0.gguf](https://huggingface.co/tensorblock/starcoder2-7b-GGUF/blob/main/starcoder2-7b-Q8_0.gguf) | Q8_0 | 7.105 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/starcoder2-7b-GGUF --include "starcoder2-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/starcoder2-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```